论文部分内容阅读
支持向量机(SupportVectorMachine,简称SVM)是在经验风险最小化原理上发展出的一种新的机器学习技术,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。论文首先详细介绍了支持向量机的线性和非线性分类算法,然后将支持向量机非线性分类器应用于银行信用风险的评估中,最后分析对比了选用不同核函数和参数的实验结果。