论文部分内容阅读
随着城市的快速发展,城市中人流的管理与移动模式挖掘变得越发重要。同时,随着以群智感知为代表的各种感知技术的发展,提出了智慧城市的概念,智慧城市中的大量感知数据为人流的分析提供了可能性。在智慧城市中,时空数据是最为常见的一种数据。本文基于城市中的时空数据,首先提出一种建模方法,将不同种类的时空数据表示为人流模型;然后基于聚类的思想,通过改进传统的基于密度的聚类算法来对人流的移动模式进行挖掘,提出一种人流的移动模式聚类算法:时空密度聚类(Spatio-Temporal Density-Based Spa