Feasibility study of creep feed grinding of 300M steel with zirconium corundum wheel

来源 :中国航空学报(英文版) | 被引量 : 0次 | 上传用户:hgy630
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The ultrahigh strength 300M steel has been commonly used in the manufacture of air-craft landing gear and rotor shaft parts due to its excellent mechanical properties.Creep feed grind-ing is one of the essential operations during the whole component manufacturing processes.In this work,the feasibility of creep feed grinding of 300M steel by using the hard zirconium corundum wheel was theoretically and experimentally evaluated.A variety of responses including grinding forces,temperature fields,specific grinding energy,surface integrity and chip modes were carefully recorded.Besides,the mechanism of ground surface profile generation and the spatial frequency spectrum of the surface profile were tentatively analyzed.It was found that the wheel speed has a relative influence on the grinding forces and temperatures of which the work hardening effect dominates the material removal with lower wheel speed while the thermal softening becomes crucial as the wheel speed exceeds the critical value for the studied 300M steel.Furthermore,a scattered spatial frequency spectrum for the generated surface profile was noticed with lower wheel speed while the spectrum gathers towards the lower frequency values with higher amplitude as the wheel speed increases.The shearing chip and flowing chip dominates the main chip type,indicating the excellent abrasive sharpness during the grinding process.In general,the used zirconium corundum wheel presents feasibility for the creep feed grinding of 300M steel because of the high material removal rate,absence of surface burn,low wheel wear and higher compressive residual stresses.
其他文献
The precooler is a distinctive component of precooled air-breathing engines but consti-tutes a challenge to conventional thermal design methods.The latter are based upon assumptions that often reveal to be limited for precooler design.In this paper,a refi
The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a helicopter.However,little research has
This paper presents the results of a numerical study of the effects of swirling flow in cool-ant jets on film cooling performance.Some combined-hole designs with swirling coolant flow enter-ing the delivery hole are proposed and analyzed.Adiabatic film co
Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on genera-tive models in deep learning.A Conditional Variational AutoEncod
Characteristics of particle migration and deposition were numerically investigated in presence of aggressive swirl at the turbine inlet.The isolated effects of the inlet swirl were considered in detail by shifting the circumferential position of the swirl
The variable geometry supersonic inlet tends to decrease the throat area to reduce the Mach number upstream of the terminal shock,so as to reduce the flow loss.However,excessive Internal Contraction Ratio (ICR) exposes the inlet to a greater risk of unsta
For the landing legs with single air chamber in the buffer structure of the reusable land-ing vehicle,the geometric topological models and the dynamic model associated with the hard points of the landing legs are established.The geometric constraint relat
An experimental study was conducted on turbulent separation behaviors induced by blunt fins with different sweep angles at Mach number 6.0.The Nano-particle based Planar Laser Scattering technique (NPLS) was applied to visualize the flowfield,complemented
The transition process within a Laminar Separation Bubble (LSB) that formed on a com-pressor blade surface was investigated using Large Eddy Simulations (LESs) at a Reynolds number of 1.5 × 105 and incidence angles of 0°,+ 3°,and + 5°.The vortex dynamics
With the improvement of the accuracy of the inertial system,the influence of the dis-turbing gravity field on the accuracy of long-range rocket has become increasingly prominent.How-ever,in actual engineering,there are problems of low accuracy and being t