论文部分内容阅读
为了解决局部二值模式(Local Binary Pattern,LBP)不能有效的提取掌纹不同尺度的特征,提出一种对曲线有很好描述、多尺度的第二代曲波变换(Curvelet)与LBP选择性结合的多尺度掌纹辨识算法。首先将原始掌纹图像进行Curvelet变换,获得不同尺度的掌纹图像;其次对得到的掌纹图像选择性使用LBP提取特征;最后采用卡方距离对不同的掌纹进行分类。通过对PolyU掌纹图像库中具有不同光照、平移、旋转的图像进行验证,证明了此算法对光照、旋转、平移都有很好的效果,且识别率高于LBP算法与