磁控溅射法制备NiOx及单面晶硅异质结太阳电池

来源 :科学通报 | 被引量 : 0次 | 上传用户:guoshun9231
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
NiOx为宽带隙p型半导体材料,其能带结构更适于用作c-Si(n)异质结空穴传输层.为了简化问题,本文研究了NiOx与Si构成的单面异质结无背场太阳电池,其结构为Al栅/ITO/NiOx/SiOx/c-Si(n)/SiOx/Al.通过研究不同溅射参数下NiOx材料的光学、电学及能带结构,分析NiOx/c-Si异质结的载流子输运及界面复合机制.研究表明异质结价带失调值ΔEv的势垒高度及界面态是影响电池性能的关键因素.结合实验与AFORS-HET软件仿真结果,本研究提出提高器件性能的两个途径:一是降低NiOx/c-Si价带失调值△Ev及界面态密度;二是提高发射区NiOx受主浓度,增强内建电场.本文为研究新型高效NiOx/c-Si异质结太阳电池提供参考并指出了方向.
其他文献
青藏高原的径流变化影响着亚洲数十亿人口的水资源供给,而该区域气象和水文观测站点稀少,致使径流和水量平衡估算具有较大的挑战.研究基于8个长时间序列的降水产品开展径流集合模拟,在陆面水文模型中考虑冰川产流过程,探讨青藏高原地区降水、径流,以及径流贡献分量(降雨径流、融冰径流、融雪径流)的时空变化,并识别它们的不确定性.模拟结果表明,在1984~2015年间,青藏高原降水量和径流分别约为423和212 mm/a,且均有增加趋势;降雨、融雪和融冰对总径流的贡献分别为66%、12%和22%;融雪径流较为稳定,但降雨
生物催化以活性高、选择性高、条件温和及底物范围广泛等优势著称,其催化目标氧化还原反应时需消耗氧化还原力.光电化学电池可利用清洁、可持续的光能和电能从水中提取电子并转化为生物催化剂可用的还原力.生物光电化学电池复合系统将生物催化和光电化学电池的优势进行结合,利用光电化学电池为生物催化提供还原力,可实现光电驱动的绿色、可持续的生物催化转化过程.本文基于构成复合系统的功能组件,首先介绍复合系统中光电极的选择策略,随后从酶、微生物两类生物催化剂出发,分别综述了近年来的研究进展,最后展望了该研究领域的未来发展.
乳化油中微量水分的分离脱除是工业废油净化,实现资源化回用的关键步骤.本研究通过乙二胺四乙酸(EDTA)诱导Mg2+和SO42-结晶,成功合成单分散硫酸镁微米颗粒(MgSO4· 1.25H2O,MSH).该颗粒在脱除乳化水分方面具有优异的性能,针对含10 mg/mL水的乳化变压器油:(1)添加16.0 g/Loil MSH可去除95.56%的水分,提高添加量或分离温度可进一步提高水分去除率至98.74%;(2)颗粒吸水后尺寸从4.1 μm膨胀至40 μm,易于从油中分离,无残留;(3)可循环再利用,初步估算
居高不下的成本已成为车用质子交换膜燃料电池商业化的最大阻碍.其中,用于阴极氧还原反应的Pt基贵金属催化剂的成本占比最高,降低Pt用量是控制燃料电池成本的关键.然而,一方面,Pt载量的降低会引起阴极氧气传质阻力明显加大,包括催化层纳米孔道内氧气扩散引起的体相传质阻力和氧气跨越Pt表面超薄离子树脂薄膜导致的局域传质阻力,从而引起电池性能的急剧恶化.另一方面,超低Pt膜电极中的质子传导问题也会降低电池的性能.这是由于离子树脂薄膜的限域作用削弱了离子树脂内部的亲疏水相分离,减少了质子的传输通道和传递效率,造成了较
中国大部分地区受季风气候控制,地表水资源时空分布极不均匀.灰色(如水库)、绿色(如森林)、蓝色(如湖泊)3种基础设施相辅相成,为调控地表水资源时空分布起到了重要作用.但仍缺乏3种基础设施蓄水能力空间分布和时间变化规律的研究,制约了水资源协同调控和综合管理.本研究基于最新的大坝、土壤根区蓄水能力、自然湖泊等数据,在流域尺度对比分析了中国九大流域3种水基础设施的空间分布,并研究了三者蓄水能力的时间变化.研究发现:(1)在长江、东南诸河等高强度人类活动的流域,人工灰色蓄水能力已经超过陆地表层自然生态系统;(2)
随着材料科学的不断发展,基于过渡金属电催化剂的活性不断提高.与Pt相比,由于其具有成本低、原料来源广等特点,非贵金属催化剂成为近年来燃料电池领域研究的热点.然而,非贵金属的催化层结构、催化性能、传质等方面研究较少,阻碍了过渡金属催化剂(如Co基材料)的进一步发展和燃料电池的应用.目前对非贵金属催化剂的研究主要集中在催化剂的合成和电催化活性研究等方面,对电极结构的设计、传质及氧还原性能影响的机理还不是十分清楚.本研究通过电沉积方法在气体扩散层上原位生长CoS/CoO纳米片催化层,调控沉积条件及后处理方法,合
溶解性有机质(dissolved organic matter,DOM)是土壤有机碳的重要组成部分,可以有效地评价干旱区沙漠化土壤植被恢复状况.然而,对于不同恢复方式、不同植被类型(如草地、灌木丛、针叶林、落叶林等)沙地土壤中DOM的演变特征与光谱学特性缺乏认知.本研究以毛乌素沙地为例,采集3种土地利用类型(裸沙地、配土改良地和植被覆盖地)的表层土壤,采用紫外吸收光谱、三维荧光光谱和平行因子模型法,结合主成分分析法探究了不同土地改良措施和植被覆盖类型下土壤中DOM的来源、含量与组分特征.结果 表明,不同土
功能纤维在可穿戴电子的应用中具有巨大的应用前景.但是,由于其成本高昂,且功能层与织物基材之间的黏合力很差,易导致功能层脱落,因此功能纤维在生物医学相关领域中的使用率很低.本文提出了一种高效的新策略,利用原子层沉积制备的氧化物薄膜来诱导自组装生长镍基金属有机框架(Ni-MOF-74),从而形成功能纤维复合结构(Ni-MOF-74-CF)及其平纹布.该复合结构中,自组装功能层黏附在纤维表面,形成多孔结构,从而增加反应活性位点、提高电子传导率,进而有效提高复合结构的电化学反应效率.在实现高灵敏多巴胺检测(在1~
最新研究表明粒子附着形成是无机晶体成核与生长的重要方式之一.这些粒子包括小到离子配对体大到结晶良好的纳米颗粒等.与仅考虑基本单体(原子、离子或分子)附着的经典结晶模型相比,粒子参与的非经典结晶路径过程更为复杂,体系自由能变化和反应动力学的相互作用导致结晶途径多样化.对无机晶体非经典结晶路径的新认识拓宽了重大地质过程和事件、生物矿化机制、环境修复和环境功能材料的研制等诸多领域研究思路.对此,本文综述了近年来提出的几种具有代表性的非经典成核和生长路径,主要包括预成核团簇路径成核、颗粒团聚成核及粒子附着生长;探
现代工农业发展迅速,使得地下水体中的硝酸盐污染越发严重,已经危害到人类的健康和生态系统的平衡.电催化硝酸盐还原法是将电化学与催化技术相结合而发展起来的一种新型水处理技术.该方法通过外加电流使硝酸盐在阴极处发生电化学还原反应,进而转化为氮气或有经济价值的氨.该过程的实现主要取决于阴极电催化材料.铜基材料因其固有的硝酸盐还原电催化活性成为人们研究的热点.目前研究者主要从单质铜、单原子铜、铜合金、铜基复合材料等4个方面进行了探索,但在铜基材料的结构与电催化硝酸盐还原性能之间的构效关系方面仍然缺乏相关的综述报道.