论文部分内容阅读
n阶行列式的定义比较复杂,也比较形式,往往使初学的人抓不住要领。从行列式的定义又提出一大堆行列式的性质:行列对调行列式的值不变;一行(或一列)乘一个常数等于行列式乘这个常数;一行(或一列)的元素全为零则行列式等于零;……等等。教科书中罗列了一大
The definition of the n-order determinant is more complex and more formal, often making beginners unable to grasp the essentials. From the definition of the determinant, it proposes the nature of a large number of determinants: the value of the row and column determinant does not change; one row (or one column) times one constant equals the determinant times this constant; the elements of one row (or one column) are all zero. The determinant is equal to zero; ... and so on. Textbooks list a big one