论文部分内容阅读
摘要:语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器人自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的命令或文本的高新技术。随着计算机处理能力的迅速提高,语音识别技术得到了飞速发展,该技术的发展和应用改变了人们的生产和生活方式,正逐步成为计算机处理技术中的关键技术。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。
关键词:语音识别;语音识别原理;语音识别发展;产品
语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器人自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的命令或文本的高新技术。
1 语音识别的原理
语音识别系统本质是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单位元。未知语音经过话筒变换成电信号后加载识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需特征,在此基础上建立语音识别所需的模板。
计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表可给出计算机的识别结果。这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。
2 语音识别系统的分类
语音识别系统可以根据对输入语音的限制加以分类。
2.1从说话者与识别系统的相关性考虑
可以将识别系统分为3类:(1)特定人语音识别系统(2)非特定人语音系统(3)多人的识别系统。
2.2从说话的方式考虑
也可以将识别系统分为3类:(1)孤立词语音识别系统(2)连接词语音识别系统(3)连续语音识别系统。
2.3从识别系统的词汇量大小考虑
也可以将识别系统分为3类:(1)小词汇量语音识别系统。(2)中等词汇量的语音识别系统。(3)大词汇量语音识别系统。
3语音识别技术的发展
3.1国外研究历史及现状
语音识别的研究工作可以追溯到20世纪50年代AT&T贝尔实验室的Audry系统,它是第一个可以识别十个英文数字的语音识别系统。
3.2国内研究历史及现状
我国语音识别研究工作起步于五十年代,但近年来发展很快。研究水平也从实验室逐步走向实用。
4 语音识别的方法
一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模板匹配的方法以及利用人工神经网络的方法。
4.1基于语音学和声学的方法
该方法起步较早,在语音识别技术提出的开始,就有了这方面的研究,但由于其模型及语音知识过于复杂,现阶段没有达到实用的阶段。
通常认为常用语言中有有限个不同的语音基元,而且可以通过其语音信号的频域或时域特性来区分。这样该方法分为两步实现:
第一步,分段和标号
把语音信号按时间分成离散的段,每段对应一个或几个语音基元的声学特性。然后根据相应声学特性对每个分段给出相近的语音标号
第二步,得到词序列
根据第一步所得语音标号序列得到一个语音基元网格,从词典得到有效的词序列,也可结合句子的文法和语义同时进行。
4.2模板匹配的方法
模板匹配的方法发展比较成熟,目前已达到了实用阶段。在模板匹配方法中,要经过四个步骤:特征提取、模板训练、模板分类、判决。常用的技术有三种:动态时间规整(DTW)、隐马尔可夫(HMM)理论、矢量量化(VQ)技术。
4.2.1动态时间规整(DTW)
语音信号的端点检测是进行语音识别中的一个基本步骤,它是特征训练和识别的基础。所谓端点检测就是在语音信号中的各种段落(如音素、音节、词素)的始点和终点的位置,从语音信号中排除无声段。
4.2.2隐马尔可夫法(HMM)
HMM是对语音信号的时间序列结构建立统计模型,将之看作一个数学上的双重随机过程:一个是用具有有限状态数的Markov链来模拟语音信号统计特性变化的隐含的随机过程,另一个是与Markov链的每一个状态相关联的观测序列的随机过程。前者通过后者表现出来,但前者的具体参数是不可测的。可见HMM合理地模仿了这一过程,很好地描述了语音信号的整体非平稳性和局部平稳性,是较为理想的一种语音模型。
4.2.3矢量量化(VQ)
矢量量化(VectorQuantization)是一种重要的信號压缩方法。与HMM相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。其过程是:将语音信号波形的k个样点的每一帧,或有k个参数的每一参数帧,构成k维空间中的一个矢量,然后对矢量进行量化。量化时,将k维无限空间划分为M个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。
4.3神经网络的方法
利用人工神经网络的方法是80年代末期提出的一种新的语音识别方法。人工神经网络(ANN)本质上是一个自适应非线性动力学系统,模拟了人类神经活动的原理,具有自适应性、并行性、鲁棒性、容错性和学习特性,其强的分类能力和输入-输出映射能力在语音识别中都很有吸引力。但由于存在训练、识别时间太长的缺点,目前仍处于实验探索阶段。
由于ANN不能很好的描述语音信号的时间动态特性,所以常把ANN与传统识别方法结合,分别利用各自优点来进行语音识别。
5 语音识别产品
语音识别产品技术的应用可以分为两个发展方向:一个方向是大词汇量连续语音识别系统,主要应用于计算机的听写机,以及与电话网或者互联网相结合的语音信息查询服务系统,这些系统都是在计算机平台上实现的;另外一个重要的发展方向是小型化、便携式语音产品的应用,如无线手机上的拨号、汽车设备的语音控制、智能玩具、家电遥控等方面的应用,这些应用系统大都使用专门的硬件系统实现,特别是近几年来迅速发展的语音信号处理专用芯片(Application Specific Integrated Circuit,ASIC)和语音识别片上系统(System on Chip,SOC)的出现,为其广泛应用创造了极为有利的条件。
6.总结与展望
总结当前语音识别产品市场,语音识别产品在我们生活的各个领域有着越来越广泛的应用。从移动终端到PC终端,从电信行业到汽车行业,语音识别产品的出现极大的方便了我们的生活,为我们提供了一种更为亲切便捷的人机交互方式。同时,智能语音行业具有很高的行业技术壁垒,必须有时间的积累和资金的投入才能做出适应市场需求的产品。我们可以发现当前市场上主流的语音识别产品都是诸如google、微软、苹果这样的行业巨头推出来。对比国内和国外的相应语音识别产品,国内语音市场主要以语音合成为主,国外语音市场主要以语音识别为主,国内的技术发展水平相比国外仍然存在一定的差距,这也激励我们要用更大的付出去努力追赶。
(作者单位:国家知识产权局专利局专利审查协作广东中心)
关键词:语音识别;语音识别原理;语音识别发展;产品
语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器人自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的命令或文本的高新技术。
1 语音识别的原理
语音识别系统本质是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单位元。未知语音经过话筒变换成电信号后加载识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需特征,在此基础上建立语音识别所需的模板。
计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表可给出计算机的识别结果。这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。
2 语音识别系统的分类
语音识别系统可以根据对输入语音的限制加以分类。
2.1从说话者与识别系统的相关性考虑
可以将识别系统分为3类:(1)特定人语音识别系统(2)非特定人语音系统(3)多人的识别系统。
2.2从说话的方式考虑
也可以将识别系统分为3类:(1)孤立词语音识别系统(2)连接词语音识别系统(3)连续语音识别系统。
2.3从识别系统的词汇量大小考虑
也可以将识别系统分为3类:(1)小词汇量语音识别系统。(2)中等词汇量的语音识别系统。(3)大词汇量语音识别系统。
3语音识别技术的发展
3.1国外研究历史及现状
语音识别的研究工作可以追溯到20世纪50年代AT&T贝尔实验室的Audry系统,它是第一个可以识别十个英文数字的语音识别系统。
3.2国内研究历史及现状
我国语音识别研究工作起步于五十年代,但近年来发展很快。研究水平也从实验室逐步走向实用。
4 语音识别的方法
一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模板匹配的方法以及利用人工神经网络的方法。
4.1基于语音学和声学的方法
该方法起步较早,在语音识别技术提出的开始,就有了这方面的研究,但由于其模型及语音知识过于复杂,现阶段没有达到实用的阶段。
通常认为常用语言中有有限个不同的语音基元,而且可以通过其语音信号的频域或时域特性来区分。这样该方法分为两步实现:
第一步,分段和标号
把语音信号按时间分成离散的段,每段对应一个或几个语音基元的声学特性。然后根据相应声学特性对每个分段给出相近的语音标号
第二步,得到词序列
根据第一步所得语音标号序列得到一个语音基元网格,从词典得到有效的词序列,也可结合句子的文法和语义同时进行。
4.2模板匹配的方法
模板匹配的方法发展比较成熟,目前已达到了实用阶段。在模板匹配方法中,要经过四个步骤:特征提取、模板训练、模板分类、判决。常用的技术有三种:动态时间规整(DTW)、隐马尔可夫(HMM)理论、矢量量化(VQ)技术。
4.2.1动态时间规整(DTW)
语音信号的端点检测是进行语音识别中的一个基本步骤,它是特征训练和识别的基础。所谓端点检测就是在语音信号中的各种段落(如音素、音节、词素)的始点和终点的位置,从语音信号中排除无声段。
4.2.2隐马尔可夫法(HMM)
HMM是对语音信号的时间序列结构建立统计模型,将之看作一个数学上的双重随机过程:一个是用具有有限状态数的Markov链来模拟语音信号统计特性变化的隐含的随机过程,另一个是与Markov链的每一个状态相关联的观测序列的随机过程。前者通过后者表现出来,但前者的具体参数是不可测的。可见HMM合理地模仿了这一过程,很好地描述了语音信号的整体非平稳性和局部平稳性,是较为理想的一种语音模型。
4.2.3矢量量化(VQ)
矢量量化(VectorQuantization)是一种重要的信號压缩方法。与HMM相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。其过程是:将语音信号波形的k个样点的每一帧,或有k个参数的每一参数帧,构成k维空间中的一个矢量,然后对矢量进行量化。量化时,将k维无限空间划分为M个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。
4.3神经网络的方法
利用人工神经网络的方法是80年代末期提出的一种新的语音识别方法。人工神经网络(ANN)本质上是一个自适应非线性动力学系统,模拟了人类神经活动的原理,具有自适应性、并行性、鲁棒性、容错性和学习特性,其强的分类能力和输入-输出映射能力在语音识别中都很有吸引力。但由于存在训练、识别时间太长的缺点,目前仍处于实验探索阶段。
由于ANN不能很好的描述语音信号的时间动态特性,所以常把ANN与传统识别方法结合,分别利用各自优点来进行语音识别。
5 语音识别产品
语音识别产品技术的应用可以分为两个发展方向:一个方向是大词汇量连续语音识别系统,主要应用于计算机的听写机,以及与电话网或者互联网相结合的语音信息查询服务系统,这些系统都是在计算机平台上实现的;另外一个重要的发展方向是小型化、便携式语音产品的应用,如无线手机上的拨号、汽车设备的语音控制、智能玩具、家电遥控等方面的应用,这些应用系统大都使用专门的硬件系统实现,特别是近几年来迅速发展的语音信号处理专用芯片(Application Specific Integrated Circuit,ASIC)和语音识别片上系统(System on Chip,SOC)的出现,为其广泛应用创造了极为有利的条件。
6.总结与展望
总结当前语音识别产品市场,语音识别产品在我们生活的各个领域有着越来越广泛的应用。从移动终端到PC终端,从电信行业到汽车行业,语音识别产品的出现极大的方便了我们的生活,为我们提供了一种更为亲切便捷的人机交互方式。同时,智能语音行业具有很高的行业技术壁垒,必须有时间的积累和资金的投入才能做出适应市场需求的产品。我们可以发现当前市场上主流的语音识别产品都是诸如google、微软、苹果这样的行业巨头推出来。对比国内和国外的相应语音识别产品,国内语音市场主要以语音合成为主,国外语音市场主要以语音识别为主,国内的技术发展水平相比国外仍然存在一定的差距,这也激励我们要用更大的付出去努力追赶。
(作者单位:国家知识产权局专利局专利审查协作广东中心)