论文部分内容阅读
情感分类是观点挖掘的热点研究之一,微博文本情感分类具有很高的应用价值。鉴于传统特征选择方法存在语义缺陷,采用神经网络语言模型,提出了基于概率模型的对词向量进行权重分配的深层特征表示方法,构建文本语义向量。将文本深层特征与浅层特征融合,构建融合语义信息的特征向量,弥补传统特征选择方法语义的缺陷。采用SVM层次结构分类模型,实现多种情感分类。实验结果表明,采用特征融合的层次结构情感分类方法,能有效提高微博情感分类的准确率。