论文部分内容阅读
[摘要] 目的 探讨静息状态下心肌透壁灌注指数(TPR)能否提高冠状动脉CT血管造影(CCTA)对冠心病诊断的准确性。 方法 回顾性分析2015年1~10月临床疑诊为冠心病并于CCTA后2周内完成冠脉血管造影(CAG)检查病例,共270例入选。应用CCTA的原始数据进行TPR分析,以CAG结果为参照,评价CCTA联合TPR对冠心病的诊断价值。 结果 单独CCTA以及联合TPR均可诊断冠心病(χ2=146.2、141.9,P均<0.01),受试者特征曲线(ROC)下面积分别为0.866、0.885。单独CCTA诊断冠心病的敏感性为93.5%(188/201),特异性为79.7%(55/69),阳性预测值为93.1%(188/202),阴性预测值为80.9%(55/68)。CCTA联合TPR诊断冠心病的敏感性为88.6%(178/201),特异性为88.4%(61/69),阳性预测值为95.7%(178/186),阴性预测值为72.6%(61/84)。 结论 TPR有助于提高CCTA诊断冠心病的准确性及特异性。
[关键词] 冠心病;冠状动脉CT造影;静息灌注成像;心肌透壁灌注指数
[中图分类号] R816.2 [文献标识码] A [文章编号] 1673-9701(2016)14-0005-04
[Abstract] Objective To evaluate the diagnostic accuracy of electrocardiographically gated 320-row coronary computed tomographic angiography (CCTA) in combination with resting transmural perfusion ratio (TPR) in individuals without known coronary artery disease(CAD). Methods A total of 270 cases clinical suspected coronary heart disease(CHD)conformed CCTA and CAG examination during January to October in 2015 were enrolled. TPR analysis was conducted from CCTA original data. The value of CCTA in combination with TPR for diagnosing CHD was evaluated referring to CAG results. Results CCTA alone and combined with resting TPR could be used to diagnose CHD(χ2=146.2, 141.9, P<0.01), the areas under receiver operating characteristic curve(ROC) were 0.866、0.885. The sensitivity,specificity,positive predictive value(PPV) and negative predictive value (NPV) of CCTA diagnosis of CHD alone were 93.5%(188/201),79.7%(55/69),93.1%(188/202), 80.9%(55/68). Those of CCTA Combined TPR were 88.6%(178/201), 88.4%(61/69), 95.7%(178/186), 72.6%(61/84), respectively. Conclusion CHD could be diagnosed by CCTA in conjunction with resting TPR with improving accuracy and specificity.
[Key words] Coronary heart disease; Coronary CT angiography; Resting perfusion imaging; Myocardial transmural perfusion ratio
冠状动脉造影(coronary computed tomography angiography,CCTA)作为成熟的影像成像技术,在识别冠状动脉狭窄方面具有高阴性预测值[1,2],临床上常用来除外中低危险度患者罹患冠状动脉疾病(coronary artery disease,CAD)。文献报道,CT心肌灌注成像联合 CCTA 可以准确预测冠状动脉狭窄引起的灌注缺损[3-5]。半定量CT灌注参数心肌透壁灌注指数(transmural perfusion ratio,TPR)可反映心肌灌注不均匀[6-8]。本文以320排CCTA数据重建各个心肌节段心肌TPR,评估TPR是否能提高CCTA对冠心病(coronary heart disease,CHD)诊断的准确性。
1 资料与方法
1.1 一般资料
收集我院2015年1~10月期间疑似CHD患者症状而在320排CT容积模式下行CCTA检查,并且在接下来2周内进行冠脉造影(coronal angiography,CAG)患者。排除:①既往有心肌梗死史或心肌酶异常;②疑似或确诊心肌炎或浸润性心肌病(包括心脏色素沉着病,淀粉样变,结节病等);③有血运重建手术史(冠状动脉搭桥术或经皮冠状动脉介入治疗)等。共339例病例入选,剔除冠脉支架植入术后22例,冠脉搭桥(CABG)术后6例,陈旧心肌梗死8例,CCTA和CAG期间发生急性心肌梗死10例,心肌桥23例,共270例纳入统计。男185例,女85例,年龄35~92岁,平均62.5岁。临床症状:胸闷127例,心前区痛45例,胸闷、胸痛42例,气促、呼吸困难30例,心悸13例,体检7例,头痛6例。既往有高血压病153例,高血压性心脏病18例,糖尿病62例,高脂/高胆固醇血症68例,脂肪肝30例,高尿酸血症13例。 1.2 320排冠脉CCTA检查
每位患者检查时的心率要求在 75 bpm以下,心率未达标者检查前口服25 mg 或50 mg 美托洛尔。使用心电门控320排CT(AquilionTM ONE, Toshiba)容积模式(volume mode)扫描。扫描参数:管电压120 KV,自动毫安,纵向扫描野 160 mm,自气管分叉处向下扫描至膈下1 cm。扫描野(D-FOV)220 mm,小焦点,旋转时间(rotation time)0.35 s,时间分辨率(time resolution)175 ms。选肘静脉埋20 g套管留置针(Intima II,BD),接高压注射器,以5.0 mL/s的速率静脉推注对比剂优维显370(Ultravist 370,Bayer HealthCare)60 mL 生理盐水20 mL,以心脏中心平面(三条冠脉主干均显示层面)降主动脉为感兴趣区(region of interest,ROI),采用Sure Smart软件智能触发扫描,自动监测ROI CT值,以220 Hu为触发节点,自动启动扫描,扫描时患者屏气约10 s,采集数据。扫描前软件自动监测呼吸、心率,65 bpm以下单beat扫描,66~75 bpm双beat扫描。
1.3 CCTA重建及CCTA诊断CHD
将数据导入后处理工作站(Vitrea advanced 6.4,Toshiba),调用冠脉重建模块,采用容积再现(volume rendering,VR)、曲面重组(curved planar reformation,CPR)、最大密度投影法(maximum intensity projection,MIP)重建三支冠脉图像。并以冠脉左前降支(left anterior descending branch,LAD)、冠脉左回旋支(left ramus circumflexus arteriae,LCX)、右冠状动脉(right coronary artery,RCA)一支或多支狭窄≥50%为CHD。
1.4 TPR图像分析
重建心电图75% R-R间期时相(多beat扫描选取第一个心动周期)重建心肌分析图像数据,重建参数为:DFOV:220 mm,层厚:0.5 mm,层间距:0.5 mm。调用心肌灌注模块(CT Myocardial perfusion)进行TPR分析。左心室壁内外膜由软件自动勾划,人工对室壁轮廓修整,分别重建3 mm层厚左室水平长轴、 垂直长轴及短轴图像,软件自动将心肌平均分成三层:心内膜下层、心肌中层、心外膜下层。根据美国心脏学会(American heart association,AHA)推荐的心脏短轴面16节段模型(除心尖外),见封三图1,自动计算每个节段心肌TPR值并应用伪彩技术自动标记。TPR为心肌节段心内膜下层心肌密度值与同断面心外膜下层的平均心肌密度比值。由于心内膜下层的血流量大于心外膜下层,因而正常心肌节段TPR>1[9],因此,我们将心肌节段TPR值≤0.99认为存在心肌缺血[10]。
1.5 CCTA联合TPR诊断CHD标准
将LAD、LCx、RCA一支或多支狭窄≥75%或LAD、LCX、RCA一支或多支狭窄为50%~75%且相应冠脉供血心肌节段TPR≤0.99认为存在CHD。
1.6 冠状动脉造影及CHD诊断标准
均于CCTA后2周内进行,采用飞利浦(Allura Xper FD 20)心血管造影系统。患者仰卧,常规右侧桡动脉消毒铺巾、穿刺,成功后置入6F动脉鞘管,于全程透视下沿鞘管送入导丝至主动脉窦口,再沿导丝置入5F多用途造影导管分别至左、右冠脉开口,注入对比剂后多体位投造动态摄影。由中级及以上职称心血管内科医师独立评估LAD、LCX、RCA狭窄程度,并以一支或多支狭窄程度≥50%为CHD诊断标准。
1.7 统计学分析
将所有数据输入SPSS20.0统计软件包,应用χ2检验评价CCTA单独及联合TPR诊断CHD准确性。主要评价指标包括敏感性 [真阳性例数/(真阳性例数 假阴性例数)]、特异性 [真阴性例数/(真阴性例数 假阳性例数)]、阳性预测值[positive predictive value,PPV;真阳性例数/(真阳性 假阳性例数)]和阴性预测值 [negative predictive value,NPV;真阴性例数/(真阴性例数 假阴性例数)],以及受试者特征曲线下面积(areas of receiver operating characteristic curve,AUC)。P<0.05为差异有统计学意义。
2 结果
2.1 CAG结果
共发现201例患者362支冠脉狭窄≥50%,其中冠脉中度狭窄(狭窄程度50%~75% )176支(LAD 85支,LCX 40支,RCA 51支);重度狭窄(狭窄>75%)186支(LAD 95支,LCX 50支,RCA 41支);62例患者存在冠脉狭窄,但狭窄直径< 50%;7例患者冠脉未见明显狭窄。
2.2 CCTA 结果
CCTA共发现202例患者348支冠脉狭窄≥50%,冠脉中度狭窄(狭窄程度50%~75% )154支(LAD 78支,LCX 39支,RCA 37支),重度狭窄(狭窄>75%)194支(LAD 102支,LCX 53支,RCA 39支),其中38支血管因严重钙化无法判断管腔狭窄程度,记入重度狭窄组。41例患者发现冠脉轻度狭窄,27例患者冠脉未见明显狭窄。见封三图2。
2.3 单独CCTA及联合TPR诊断冠心病
单独CCTA以及联合TPR均可诊断冠心病(χ2=146.2、141.9,P均<0.01),受试者特征曲线(ROC)下面积分别为0.866、0.885。单独CCTA诊断冠心病的敏感性为93.5%(188/201), 特异性为79.7%(55/69), 阳性预测值为93.1%(188/202),阴性预测值为80.9%(55/68)。CCTA联合TPR诊断冠心病的敏感性为88.6%(178/201),特异性为88.4%(61/69),阳性预测值为95.7%(178/186),阴性预测值为72.6%(61/84)。见表1。 3 讨论
CCTA可准确显示冠状动脉斑块并且定量评估冠状动脉狭窄程度,已在临床上得到广泛应用[11]。多中心研究表明[12],CCTA可用于诊断冠心病,其对冠心病诊断敏感性95%、特异性83%,与本组数据敏感性93.5%、特异性79.7%结果类似。但本组数据NPV较文献偏低,可能是由于本组数据为回顾性研究,部分CCTA阴性结果患者未行CAG检查造成选择偏倚所致。此外,CCTA倾向于高估冠脉狭窄程度,其显示冠状动脉狭窄导致心肌缺血的特异性较差。
由于心肌灌注呈跨壁分布[13],正常人心内膜下血流较心外膜丰富,在CCTA图像上,表现为心内膜下心肌密度高于心外膜,即TPR>1[14]。非负荷状态下心肌灌注主要受冠脉狭窄程度影响,随着冠脉狭窄程度进展,当冠脉血流储备不能代偿,首先表现为心内膜下心肌密度减低,即出现TPR<1[15,16]。本组数据证实CCTA联合基于CCTA数据的TPR分析可提高对CAD诊断准确性(AUC:0.866 比0.885)、特异性(79.7%比88.4%),尽管其敏感性有所降低(93.5%比88.6%)。Osawa等[17]报道心肌CT首过灌注加CCTA诊断冠心病敏感性为96%、特异性为58%,与本组数据差异较大,其可能原因是文献主要考量冠脉狭窄后导致心肌密度减低,该指标未能反映心内外膜下心肌灌注不均,有可能存在假阴性结果。而且由于静息态心肌灌注扫描并不存在时间-密度曲线,诊断缺血心肌主要依赖仔细观察心肌强化相对减低区,易受人为等因素影响。
本文数据显示,CCTA联合静息TPR诊断冠心病,其敏感性及特异性不如文献[1,18]所报道腺苷等负荷心肌灌注,其可能原因是在负荷条件下,狭窄的冠状动脉其血供不能相应增加,导致供血节段血供不足,出现诱导性心肌缺血。但相比较而言,负荷试验具有一定的危险性,而且多次扫描带来心肌额外的辐射剂量。本组重建75%心动周期CCTA数据进行TPR分析,主要是由于此时心脏正处于舒张期,因此可减少运动伪影,减少TPR图像假阳性结果以免误判;同时该期相也是冠脉最佳展示时相,有利于同时评估冠脉结构及心肌首过灌注[14,19]。
TPR反映心肌透壁灌注差异,可出现假阳性和假阴性的结果。静息态心肌TPR分析基于冠脉CCTA数据,具有潜在高假阳性率。由于冠脉充盈最佳时间与心肌毛细血管网灌注平衡存在时间差,容易引起心肌特别是心内膜下心肌对比剂渗透不充分,可能会导致TPR<0.99,从而出现假阳性结果。此外射线硬化伪影也可导致假阳性结果。尽管320排容积模式CT具有扫描时间的一致性,基本上克服了呼吸、心脏运动伪影,但是X线束硬化伪影,容易被误认为灌注缺损[20,21]。假阴性结果的出现则是由小尺寸或跨节段灌注缺损,稀释在心肌节段内,妨碍准确评估;或是当冠脉重度狭窄患者同时存在内外膜心肌缺血时,其TPR值可能大于1,联合CCTA可避免漏诊。此外,CCTA经常使用β-受体阻滞剂降低HR和心肌血流量,这种影响可能会减少正常灌注和缺血心肌的差异。未来技术的进步,进一步提高时间分辨率、改善空间分辨率、改进的射束硬化校正算法,有助于提高诊断的准确性。
总之,静态心肌TPR分析可为临床提供心肌层面微循环灌注信息,CCTA和静息态TPR分析作为CHD完全不同但互补的评估手段,在不增加费用和辐射剂量前提下,CCTA联合TPR可提高CCTA单独用于冠心病诊断的准确性。
[参考文献]
[1] Nasis A,Kob S,Leung MC,et al. Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography:Pilot study[J]. European Radiology,2013,23(7):1812-1821.
[2] Roger VL,Go AS,Lloyd-jones DM,et al. Heart disease and stroke statistics-2011 update:A report from the American heart association[J]. Circulation,2011,123(4):e18-e209.
[3] Kim SM,Choi JH,Chang SA,et al. Detection of ischaemic myocardial lesions with coronary CT angiography and adenosine-stress dynamic perfusion imaging using a 128-slice dual-source CT:Diagnostic performance in comparison with cardiac MRI[J]. The British Journal of Radiology,2013, 86(1032):20130481.
[4] Nagao M,Matsuoka H,Kawakami H,et al. Detection of myocardial ischemia using 64-slice MDCT[J]. Circulation Journal:Official Journal of the Japanese Circulation Society, 2009,73(5):905-911.
[5] 张传臣,张兆琪,王蒨,等. 320层容积CT心肌灌注成像对心肌灌注缺损的诊断价值[J]. 中华放射学杂志,2012,46(5):396-400.
[6] Hosokawa K,Kurata A,Kido T,et al. Transmural perfusion gradient in adenosine triphosphate stress myocardial per-fusion computed tomography[J]. Circulation Journal,2011, 75(8):1905-1912. [7] Nagao M,Hatakenaka M,Matsuo Y,et al. Subendocardial contractile impairment in chronic ischemic myocardium: Assessment by strain analysis of 3T tagged CMR[J]. Journal of Cardiovascular Magnetic Resonance:Official Journal of the Society for Cardiovascular Magnetic Re-sonance,2012,14(1):14.
[8] Vavere AL,Simon GG,George RT,et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography:Design and implementation of the CORE320 multicenter,multinational diagnostic study[J]. Journal of Cardiovascular Computed Tomography,2011,5(6):370-381.
[9] 孔建国,许化致,吴恩福,等. 静息态下320排容积CT对正常心肌灌注的研究[J]. 温州医科大学学报,2014,44(9):653-656.
[10] Schuhback A,Marwan M,Cury RC,et al. Current status of cardiac CT for the detection of myocardial ischemia[J].Herz,2013,38(4):359-366.
[11]De Graaf MA,El-Naggar HM,Boogers MJ,et al. Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT[J]. European Journal of Nuclear Medicine and Molecular Imaging,2013,40(8):1171-1180.
[12]Budoff MJ,Dowe D,Jollis JG,et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease:Results from the prospective multicenter ACCURACY(assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography)trial[J]. Journal of the American College of Cardiology,2008,52(21):1724-1732.
[13] Kuhl JT,Linde JJ,Fuchs A,et al. Patterns of myocardial perfusion in humans evaluated with contrast-enhanced 320 multidetector computed tomography[J]. The International Journal of Cardiovascular Imaging,2012,28(7):1739-1747.
[14]Troupis JM,Karge A,Seneviratne S,et al. Myocardial density analysis utilizing automated myocardial defect analysis software on resting 320-detector MDCT[J]. The International Journal of Cardiovascular Imaging,2013,29(5):1121-1127.
[15]Busch JL,Alessio AM,Caldwell JH,et al. Myocardial hypo-enhancement on resting computed tomography angiography images accurately identifies myocardial hypoperfusion[J]. Journal of Cardiovascular Computed Tomography,2011,5(6):412-420.
[16]许化致,朱姬莹,曹国全,等. 应用320排CT评估重度冠状动脉狭窄患者静息态心肌灌注[J]. 浙江医学,2015, 37(7):554-557.
[17]Osawa K,Miyoshi T,Koyama Y,et al. Additional diagnostic value of first-pass myocardial perfusion imaging without stress when combined with 64-row detector coronary CT angiography in patients with coronary artery disease[J]. Heart,2014,100(13):1008-1015. [18] Rief M,Zimmermann E,Stenzei F,et al. Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents:Prospective intraindividual comparison with conventional coronary angiography[J]. Journal of the American College of Cardiology,2013,62(16):1476-1485.
[19] Williams MC,Cruden NL,Uren NG,et al. A low-dose comprehensive cardiac CT protocol assessing anatomy,function,perfusion,and viability[J]. Journal of Cardiovascular Computed Tomography,2013,7(1):69-72.
[20] Rodriguez-granillo GA,Rosales MA,Degrossi E,et al. Signal density of left ventricular myocardial segments and impact of beam hardening artifact:Implications for myocardial perfusion assessment by multidetector CT coronary angiography[J]. The International Journal of Cardiovascular Imaging,2010,26(3):345-354.
[21] Rief M,Stenzel F,Kranz A,et al. Time efficiency and diagnostic accuracy of new automated myocardial perfusion analysis software in 320-row CT cardiac imaging[J]. Korean Journal of Radiology,2013,14(1):21-29.
(收稿日期:2016-01-22)
[关键词] 冠心病;冠状动脉CT造影;静息灌注成像;心肌透壁灌注指数
[中图分类号] R816.2 [文献标识码] A [文章编号] 1673-9701(2016)14-0005-04
[Abstract] Objective To evaluate the diagnostic accuracy of electrocardiographically gated 320-row coronary computed tomographic angiography (CCTA) in combination with resting transmural perfusion ratio (TPR) in individuals without known coronary artery disease(CAD). Methods A total of 270 cases clinical suspected coronary heart disease(CHD)conformed CCTA and CAG examination during January to October in 2015 were enrolled. TPR analysis was conducted from CCTA original data. The value of CCTA in combination with TPR for diagnosing CHD was evaluated referring to CAG results. Results CCTA alone and combined with resting TPR could be used to diagnose CHD(χ2=146.2, 141.9, P<0.01), the areas under receiver operating characteristic curve(ROC) were 0.866、0.885. The sensitivity,specificity,positive predictive value(PPV) and negative predictive value (NPV) of CCTA diagnosis of CHD alone were 93.5%(188/201),79.7%(55/69),93.1%(188/202), 80.9%(55/68). Those of CCTA Combined TPR were 88.6%(178/201), 88.4%(61/69), 95.7%(178/186), 72.6%(61/84), respectively. Conclusion CHD could be diagnosed by CCTA in conjunction with resting TPR with improving accuracy and specificity.
[Key words] Coronary heart disease; Coronary CT angiography; Resting perfusion imaging; Myocardial transmural perfusion ratio
冠状动脉造影(coronary computed tomography angiography,CCTA)作为成熟的影像成像技术,在识别冠状动脉狭窄方面具有高阴性预测值[1,2],临床上常用来除外中低危险度患者罹患冠状动脉疾病(coronary artery disease,CAD)。文献报道,CT心肌灌注成像联合 CCTA 可以准确预测冠状动脉狭窄引起的灌注缺损[3-5]。半定量CT灌注参数心肌透壁灌注指数(transmural perfusion ratio,TPR)可反映心肌灌注不均匀[6-8]。本文以320排CCTA数据重建各个心肌节段心肌TPR,评估TPR是否能提高CCTA对冠心病(coronary heart disease,CHD)诊断的准确性。
1 资料与方法
1.1 一般资料
收集我院2015年1~10月期间疑似CHD患者症状而在320排CT容积模式下行CCTA检查,并且在接下来2周内进行冠脉造影(coronal angiography,CAG)患者。排除:①既往有心肌梗死史或心肌酶异常;②疑似或确诊心肌炎或浸润性心肌病(包括心脏色素沉着病,淀粉样变,结节病等);③有血运重建手术史(冠状动脉搭桥术或经皮冠状动脉介入治疗)等。共339例病例入选,剔除冠脉支架植入术后22例,冠脉搭桥(CABG)术后6例,陈旧心肌梗死8例,CCTA和CAG期间发生急性心肌梗死10例,心肌桥23例,共270例纳入统计。男185例,女85例,年龄35~92岁,平均62.5岁。临床症状:胸闷127例,心前区痛45例,胸闷、胸痛42例,气促、呼吸困难30例,心悸13例,体检7例,头痛6例。既往有高血压病153例,高血压性心脏病18例,糖尿病62例,高脂/高胆固醇血症68例,脂肪肝30例,高尿酸血症13例。 1.2 320排冠脉CCTA检查
每位患者检查时的心率要求在 75 bpm以下,心率未达标者检查前口服25 mg 或50 mg 美托洛尔。使用心电门控320排CT(AquilionTM ONE, Toshiba)容积模式(volume mode)扫描。扫描参数:管电压120 KV,自动毫安,纵向扫描野 160 mm,自气管分叉处向下扫描至膈下1 cm。扫描野(D-FOV)220 mm,小焦点,旋转时间(rotation time)0.35 s,时间分辨率(time resolution)175 ms。选肘静脉埋20 g套管留置针(Intima II,BD),接高压注射器,以5.0 mL/s的速率静脉推注对比剂优维显370(Ultravist 370,Bayer HealthCare)60 mL 生理盐水20 mL,以心脏中心平面(三条冠脉主干均显示层面)降主动脉为感兴趣区(region of interest,ROI),采用Sure Smart软件智能触发扫描,自动监测ROI CT值,以220 Hu为触发节点,自动启动扫描,扫描时患者屏气约10 s,采集数据。扫描前软件自动监测呼吸、心率,65 bpm以下单beat扫描,66~75 bpm双beat扫描。
1.3 CCTA重建及CCTA诊断CHD
将数据导入后处理工作站(Vitrea advanced 6.4,Toshiba),调用冠脉重建模块,采用容积再现(volume rendering,VR)、曲面重组(curved planar reformation,CPR)、最大密度投影法(maximum intensity projection,MIP)重建三支冠脉图像。并以冠脉左前降支(left anterior descending branch,LAD)、冠脉左回旋支(left ramus circumflexus arteriae,LCX)、右冠状动脉(right coronary artery,RCA)一支或多支狭窄≥50%为CHD。
1.4 TPR图像分析
重建心电图75% R-R间期时相(多beat扫描选取第一个心动周期)重建心肌分析图像数据,重建参数为:DFOV:220 mm,层厚:0.5 mm,层间距:0.5 mm。调用心肌灌注模块(CT Myocardial perfusion)进行TPR分析。左心室壁内外膜由软件自动勾划,人工对室壁轮廓修整,分别重建3 mm层厚左室水平长轴、 垂直长轴及短轴图像,软件自动将心肌平均分成三层:心内膜下层、心肌中层、心外膜下层。根据美国心脏学会(American heart association,AHA)推荐的心脏短轴面16节段模型(除心尖外),见封三图1,自动计算每个节段心肌TPR值并应用伪彩技术自动标记。TPR为心肌节段心内膜下层心肌密度值与同断面心外膜下层的平均心肌密度比值。由于心内膜下层的血流量大于心外膜下层,因而正常心肌节段TPR>1[9],因此,我们将心肌节段TPR值≤0.99认为存在心肌缺血[10]。
1.5 CCTA联合TPR诊断CHD标准
将LAD、LCx、RCA一支或多支狭窄≥75%或LAD、LCX、RCA一支或多支狭窄为50%~75%且相应冠脉供血心肌节段TPR≤0.99认为存在CHD。
1.6 冠状动脉造影及CHD诊断标准
均于CCTA后2周内进行,采用飞利浦(Allura Xper FD 20)心血管造影系统。患者仰卧,常规右侧桡动脉消毒铺巾、穿刺,成功后置入6F动脉鞘管,于全程透视下沿鞘管送入导丝至主动脉窦口,再沿导丝置入5F多用途造影导管分别至左、右冠脉开口,注入对比剂后多体位投造动态摄影。由中级及以上职称心血管内科医师独立评估LAD、LCX、RCA狭窄程度,并以一支或多支狭窄程度≥50%为CHD诊断标准。
1.7 统计学分析
将所有数据输入SPSS20.0统计软件包,应用χ2检验评价CCTA单独及联合TPR诊断CHD准确性。主要评价指标包括敏感性 [真阳性例数/(真阳性例数 假阴性例数)]、特异性 [真阴性例数/(真阴性例数 假阳性例数)]、阳性预测值[positive predictive value,PPV;真阳性例数/(真阳性 假阳性例数)]和阴性预测值 [negative predictive value,NPV;真阴性例数/(真阴性例数 假阴性例数)],以及受试者特征曲线下面积(areas of receiver operating characteristic curve,AUC)。P<0.05为差异有统计学意义。
2 结果
2.1 CAG结果
共发现201例患者362支冠脉狭窄≥50%,其中冠脉中度狭窄(狭窄程度50%~75% )176支(LAD 85支,LCX 40支,RCA 51支);重度狭窄(狭窄>75%)186支(LAD 95支,LCX 50支,RCA 41支);62例患者存在冠脉狭窄,但狭窄直径< 50%;7例患者冠脉未见明显狭窄。
2.2 CCTA 结果
CCTA共发现202例患者348支冠脉狭窄≥50%,冠脉中度狭窄(狭窄程度50%~75% )154支(LAD 78支,LCX 39支,RCA 37支),重度狭窄(狭窄>75%)194支(LAD 102支,LCX 53支,RCA 39支),其中38支血管因严重钙化无法判断管腔狭窄程度,记入重度狭窄组。41例患者发现冠脉轻度狭窄,27例患者冠脉未见明显狭窄。见封三图2。
2.3 单独CCTA及联合TPR诊断冠心病
单独CCTA以及联合TPR均可诊断冠心病(χ2=146.2、141.9,P均<0.01),受试者特征曲线(ROC)下面积分别为0.866、0.885。单独CCTA诊断冠心病的敏感性为93.5%(188/201), 特异性为79.7%(55/69), 阳性预测值为93.1%(188/202),阴性预测值为80.9%(55/68)。CCTA联合TPR诊断冠心病的敏感性为88.6%(178/201),特异性为88.4%(61/69),阳性预测值为95.7%(178/186),阴性预测值为72.6%(61/84)。见表1。 3 讨论
CCTA可准确显示冠状动脉斑块并且定量评估冠状动脉狭窄程度,已在临床上得到广泛应用[11]。多中心研究表明[12],CCTA可用于诊断冠心病,其对冠心病诊断敏感性95%、特异性83%,与本组数据敏感性93.5%、特异性79.7%结果类似。但本组数据NPV较文献偏低,可能是由于本组数据为回顾性研究,部分CCTA阴性结果患者未行CAG检查造成选择偏倚所致。此外,CCTA倾向于高估冠脉狭窄程度,其显示冠状动脉狭窄导致心肌缺血的特异性较差。
由于心肌灌注呈跨壁分布[13],正常人心内膜下血流较心外膜丰富,在CCTA图像上,表现为心内膜下心肌密度高于心外膜,即TPR>1[14]。非负荷状态下心肌灌注主要受冠脉狭窄程度影响,随着冠脉狭窄程度进展,当冠脉血流储备不能代偿,首先表现为心内膜下心肌密度减低,即出现TPR<1[15,16]。本组数据证实CCTA联合基于CCTA数据的TPR分析可提高对CAD诊断准确性(AUC:0.866 比0.885)、特异性(79.7%比88.4%),尽管其敏感性有所降低(93.5%比88.6%)。Osawa等[17]报道心肌CT首过灌注加CCTA诊断冠心病敏感性为96%、特异性为58%,与本组数据差异较大,其可能原因是文献主要考量冠脉狭窄后导致心肌密度减低,该指标未能反映心内外膜下心肌灌注不均,有可能存在假阴性结果。而且由于静息态心肌灌注扫描并不存在时间-密度曲线,诊断缺血心肌主要依赖仔细观察心肌强化相对减低区,易受人为等因素影响。
本文数据显示,CCTA联合静息TPR诊断冠心病,其敏感性及特异性不如文献[1,18]所报道腺苷等负荷心肌灌注,其可能原因是在负荷条件下,狭窄的冠状动脉其血供不能相应增加,导致供血节段血供不足,出现诱导性心肌缺血。但相比较而言,负荷试验具有一定的危险性,而且多次扫描带来心肌额外的辐射剂量。本组重建75%心动周期CCTA数据进行TPR分析,主要是由于此时心脏正处于舒张期,因此可减少运动伪影,减少TPR图像假阳性结果以免误判;同时该期相也是冠脉最佳展示时相,有利于同时评估冠脉结构及心肌首过灌注[14,19]。
TPR反映心肌透壁灌注差异,可出现假阳性和假阴性的结果。静息态心肌TPR分析基于冠脉CCTA数据,具有潜在高假阳性率。由于冠脉充盈最佳时间与心肌毛细血管网灌注平衡存在时间差,容易引起心肌特别是心内膜下心肌对比剂渗透不充分,可能会导致TPR<0.99,从而出现假阳性结果。此外射线硬化伪影也可导致假阳性结果。尽管320排容积模式CT具有扫描时间的一致性,基本上克服了呼吸、心脏运动伪影,但是X线束硬化伪影,容易被误认为灌注缺损[20,21]。假阴性结果的出现则是由小尺寸或跨节段灌注缺损,稀释在心肌节段内,妨碍准确评估;或是当冠脉重度狭窄患者同时存在内外膜心肌缺血时,其TPR值可能大于1,联合CCTA可避免漏诊。此外,CCTA经常使用β-受体阻滞剂降低HR和心肌血流量,这种影响可能会减少正常灌注和缺血心肌的差异。未来技术的进步,进一步提高时间分辨率、改善空间分辨率、改进的射束硬化校正算法,有助于提高诊断的准确性。
总之,静态心肌TPR分析可为临床提供心肌层面微循环灌注信息,CCTA和静息态TPR分析作为CHD完全不同但互补的评估手段,在不增加费用和辐射剂量前提下,CCTA联合TPR可提高CCTA单独用于冠心病诊断的准确性。
[参考文献]
[1] Nasis A,Kob S,Leung MC,et al. Diagnostic accuracy of combined coronary angiography and adenosine stress myocardial perfusion imaging using 320-detector computed tomography:Pilot study[J]. European Radiology,2013,23(7):1812-1821.
[2] Roger VL,Go AS,Lloyd-jones DM,et al. Heart disease and stroke statistics-2011 update:A report from the American heart association[J]. Circulation,2011,123(4):e18-e209.
[3] Kim SM,Choi JH,Chang SA,et al. Detection of ischaemic myocardial lesions with coronary CT angiography and adenosine-stress dynamic perfusion imaging using a 128-slice dual-source CT:Diagnostic performance in comparison with cardiac MRI[J]. The British Journal of Radiology,2013, 86(1032):20130481.
[4] Nagao M,Matsuoka H,Kawakami H,et al. Detection of myocardial ischemia using 64-slice MDCT[J]. Circulation Journal:Official Journal of the Japanese Circulation Society, 2009,73(5):905-911.
[5] 张传臣,张兆琪,王蒨,等. 320层容积CT心肌灌注成像对心肌灌注缺损的诊断价值[J]. 中华放射学杂志,2012,46(5):396-400.
[6] Hosokawa K,Kurata A,Kido T,et al. Transmural perfusion gradient in adenosine triphosphate stress myocardial per-fusion computed tomography[J]. Circulation Journal,2011, 75(8):1905-1912. [7] Nagao M,Hatakenaka M,Matsuo Y,et al. Subendocardial contractile impairment in chronic ischemic myocardium: Assessment by strain analysis of 3T tagged CMR[J]. Journal of Cardiovascular Magnetic Resonance:Official Journal of the Society for Cardiovascular Magnetic Re-sonance,2012,14(1):14.
[8] Vavere AL,Simon GG,George RT,et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography:Design and implementation of the CORE320 multicenter,multinational diagnostic study[J]. Journal of Cardiovascular Computed Tomography,2011,5(6):370-381.
[9] 孔建国,许化致,吴恩福,等. 静息态下320排容积CT对正常心肌灌注的研究[J]. 温州医科大学学报,2014,44(9):653-656.
[10] Schuhback A,Marwan M,Cury RC,et al. Current status of cardiac CT for the detection of myocardial ischemia[J].Herz,2013,38(4):359-366.
[11]De Graaf MA,El-Naggar HM,Boogers MJ,et al. Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT[J]. European Journal of Nuclear Medicine and Molecular Imaging,2013,40(8):1171-1180.
[12]Budoff MJ,Dowe D,Jollis JG,et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease:Results from the prospective multicenter ACCURACY(assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography)trial[J]. Journal of the American College of Cardiology,2008,52(21):1724-1732.
[13] Kuhl JT,Linde JJ,Fuchs A,et al. Patterns of myocardial perfusion in humans evaluated with contrast-enhanced 320 multidetector computed tomography[J]. The International Journal of Cardiovascular Imaging,2012,28(7):1739-1747.
[14]Troupis JM,Karge A,Seneviratne S,et al. Myocardial density analysis utilizing automated myocardial defect analysis software on resting 320-detector MDCT[J]. The International Journal of Cardiovascular Imaging,2013,29(5):1121-1127.
[15]Busch JL,Alessio AM,Caldwell JH,et al. Myocardial hypo-enhancement on resting computed tomography angiography images accurately identifies myocardial hypoperfusion[J]. Journal of Cardiovascular Computed Tomography,2011,5(6):412-420.
[16]许化致,朱姬莹,曹国全,等. 应用320排CT评估重度冠状动脉狭窄患者静息态心肌灌注[J]. 浙江医学,2015, 37(7):554-557.
[17]Osawa K,Miyoshi T,Koyama Y,et al. Additional diagnostic value of first-pass myocardial perfusion imaging without stress when combined with 64-row detector coronary CT angiography in patients with coronary artery disease[J]. Heart,2014,100(13):1008-1015. [18] Rief M,Zimmermann E,Stenzei F,et al. Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents:Prospective intraindividual comparison with conventional coronary angiography[J]. Journal of the American College of Cardiology,2013,62(16):1476-1485.
[19] Williams MC,Cruden NL,Uren NG,et al. A low-dose comprehensive cardiac CT protocol assessing anatomy,function,perfusion,and viability[J]. Journal of Cardiovascular Computed Tomography,2013,7(1):69-72.
[20] Rodriguez-granillo GA,Rosales MA,Degrossi E,et al. Signal density of left ventricular myocardial segments and impact of beam hardening artifact:Implications for myocardial perfusion assessment by multidetector CT coronary angiography[J]. The International Journal of Cardiovascular Imaging,2010,26(3):345-354.
[21] Rief M,Stenzel F,Kranz A,et al. Time efficiency and diagnostic accuracy of new automated myocardial perfusion analysis software in 320-row CT cardiac imaging[J]. Korean Journal of Radiology,2013,14(1):21-29.
(收稿日期:2016-01-22)