论文部分内容阅读
复杂网络社团发现的研究对于控制疾病传播、网络病毒的传播等具有重大意义。针对已有社团发现算法时间复杂度过高,不适用于结构未知的大型网络等问题,结合谱聚类在识别未知分布数据集聚类方面的优势,以及模块度函数能够在大型网络中搜寻出最佳社团数目的能力,提出了基于谱聚类的社团发现算法——SCCF算法。实验结果表明,与已有的社团发现算法相比,SCCF算法效率更高,并且能够在网络节点数上万的大型网络中得到高质量的社团结构。