论文部分内容阅读
Precise spatial control of 2D materials is the key capability of engineering their optical,electronic,and mechanical properties.However,growth of novel 2D Mo2C on Cu surface by chemical vapor deposition method was revealed to be seedinduced 2D growth,limiting further synthesis of complex Mo2C spatial structures.In this research,we demonstrate the controlled growth of Mo2C pyramids with numerous morphologies,which are characterized with clear terraces within the structures.The whole evolution for Mo2C pyramids in the coursed of CVD process has been detected,posing significant potential in probing growth mechanism.The formation of the M02C pyramids arises from the supersaturation-induced nucleation and concentration-gradient driven diffused growth of a new Mo2C layer on the edged areas of intrinsic ones,as supported by STEM imaging.This work provides a novel Mo2C-based pyramid structure and further reveals a sliding growth mechanism,which could offer impetus for the design of new 3D spatial structures of Mo2C and other 2D materials.