论文部分内容阅读
[摘 要]锂离子电池由于具有能量密度大、输出电压高、循环寿命长、环境污染小等优点,在小型数码电子产品中获得了广泛应用,在电动汽车、航空航天等领域也具有广阔的应用前景。然而,近年来关于锂离子电池引发的火灾甚至爆炸的报道己屡见不鲜,锂离子电池的安全问题引起人们普遍的关注,是限制锂离子电池在动力和大规模储能领域实现产业升级的主要障碍。电池的正负极材料固然重要,但是电解液可以说是电池的血液,电解液在电池中充当很重要的角色,因此,本文将着重介绍电解液添加剂的研究。
[关键词]锂离子电池 电解液量 添加剂 阻燃 防过充 高电压电解液
中图分类号:TN611 文献标识码:A 文章编号:1009-914X(2017)01-0388-01
1.锂离子电池电解液
1.1 液体电解液
电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在较高的电位下和较高温度环境中不易发生分解,具有较高的离子导电率,而且对阴阳极材料必须是惰性的、不能侵腐它们。由于锂离子电池充放电电位较高而且阳极材料嵌有化学活性较大的锂,所以电解质必须采用有机化合物而不能含有水。但有机物离子导电率都不好,所以要在有机溶剂中加入可溶解的导电盐以提高离子导电率。
1.2 固体电解液
用金属锂直接用作阳极材料具有很高的可逆容量,其理论容量是石墨材料的十几倍,价格也较低,被看作新一代锂离子电池最有吸引力的阳极材料,但会产生枝晶锂。采用固体电解质作为离子的传导可抑制枝晶锂的生长,使得金属锂用作阳极材料成为可能。此外使用固体电解质可避免液态电解液漏液的缺点,还可把电池做成更薄、能量密度更高、体积更小的高能电池。固体聚合物电解质具有良好的柔韧性、成膜性、稳定性、成本低等特点,既可作为正负电极间隔膜用又可作为传递离子的电解质用。
2.电解液量的影响
2.1 电解液量对电池容量的影响
容量随着电解液量的增加而增加,容量最好的电池是隔膜刚好浸润。电解液量不够,正极片浸润不充分,隔膜未浸润,导致内阻偏大,容量发挥较低。电解液量的增加有利于充分利用活性物质的容量。由此说明,电池容量与电解液量有较大关系,电池容量随着电解液量的增加而增加,但最后基本趋于恒定。
2.2 电解液量对电池循环性能的影响
电解液量较少,导电率降低,循环后内阻增大快,加速电池局部电解液的分解或挥发,是电池循环性能的恶化速度逐渐加快。电解液过多导致电芯的副反应也相对增加,产气量较多,导致电芯的循环性能下降。再者电解液过量也浪费。由此可见电解液量对电池的循环性能影响非常明显,电解液过少或过多,都不利于电池的循环性能。
2.3 电解液量对电池安全性能的影响
电池的安全性能好主要是使用过程中不出现鼓壳和爆炸。电池爆炸的其中一个原因就是注液量达不到工艺要求。当电解液量过少时,电池内阻大,发热多。温度升高导致电解液迅速分解产气,隔膜融化,造成电池气胀短路爆炸。而当电解液量过多时,充放电过程产生的气体量大,电池内部压力大,壳体破裂,引起电解液泄露。电解液温度较高时,遇到空气而着火。
3.添加剂的研究
针对电解液存在诸多不安全因素,不仅会影响人们的人身安全,同时也降低了锂离子动力电池的使用寿命,所以电解液中加入添加剂这项研究十分必要。
3.1 电解液添加阻燃剂防止燃烧爆炸
阻燃机理源于高分子聚合物的阻燃机理,在不影响电池电化学性能的条件下,阻燃添加剂主要表现在如下几方面:添加剂受热分解,释放出捕获燃烧反应中的·OH(羟基)自由基,使按自由基链式反应进行的燃烧过程终止;加入无闪点或高闪点的阻燃添加剂来替代或部分替代易燃和热稳定性差的有机溶剂,使其本身的闪点提,燃烧性降低;添加剂吸热分解,利用热分解时生成的不燃性气体的气化热来降低电解液的温度,使其温度减慢上升。现在常用的阻燃剂是复合阻燃添加剂。
3.2 复合阻燃添加剂
在现代阻燃技术中,阻燃剂的复合技术是极其重要的发展方向。复合阻燃体系顾名思义,具有两种以上的阻燃元素,兼有不同种类阻燃剂的特性。几种阻燃元素的协同作用即可降低添加剂用量,又可提高阻燃效率,复合协同作用为电解液阻燃技术的深入研究开辟了广阔的前景。目前,用于锂离子电池电解液中复合阻燃添加剂主要是磷-氟类化合物,特别是氟代磷酸酯类化合物,此类化合物具有P和F两种阻燃元素,可以协同作用。
4.电解液加入添加剂,防止过度充电
过充电保护添加剂应该具有的特点:在有机电解液中具有良好的溶解性和足够快的扩散速度,能在大电流范围内提供保护作用;在电池使用温度范围内具有良好的稳定性;有合适的氧化电势,其值在电池的充电截止电压和电解液氧化的电势之间;氧化产物在还原过程中没有其他副反应,以免添加剂在过充过程中被消耗;添加剂对电池的性能没有副作用?。电解液防止过度充电通常有两种添加剂:电聚合添加剂和氧化还原电对添加剂。
电聚合添加剂的加入,使电池自动放电至安全状态,防止了电池的爆炸,同时该种添加剂聚合时产生大量气体,导致电池膨胀比较严重,所以电解液不宜加入;氧化还原电对添加剂对锂离子电池有很好的过充电保护作用。
5.电解液加入添加剂,可以增强耐高压
目前,常规碳酸酯溶剂体系碳酸丙烯酯,碳酸乙烯酯,碳酸二乙酯,碳酸二甲酯和碳酸甲基乙基酯组成的电解液基本能够满足高电压材料的充放电测试需要,但是锂盐浓度的增加会降低电解液的热稳定性。
5.1 氟代溶剂
由于氟原子具有强电负性和弱极性,致使氟代溶剂具有较高的电化学稳定性。目前氟代溶剂大多作为共溶剂或添加剂用在锂离子电池液态电解液中。通过研究一系列部分被氟取代或完全被氟取代的有机碳酸酯溶剂,证实了普通有机溶剂在引入氟元素之后,其物理性质发生了很大的变化,如溶剂的凝固点降低、抗氧化的稳定性提高、有利于在碳负极表面形成固体电解质界面膜。
5.2 腈类溶剂
一般含腈基的有机溶剂的反应产物是羧化物、醛或相应的有机胺,因此腈基溶剂在使用过程中是安全的,不用担心因剧毒的CN-离子的出现而影响使用。其中GLN和AND在众多二腈基溶剂中表现出最佳的热稳定性、低粘度和高介电常数等优点。但是,腈类溶剂与锂离子电池的石墨或金属锂等低电位负极相容性较差,极易在负极表面发生聚合反应,聚合产物会阻止?Li+的脱嵌添加适量的EC或LiBOB可以改善此类溶剂与低电位负极的相容性。室温下AND或GLN与共溶剂EC组成的电解液具有较高的离子电导率和较低的粘度,完全满足锂离子电池的充放电需求且使用后电池循环性能较好。
6.添加剂展望
随着近年来锂离子电池工业的迅速发展,新型添加剂的研究与开发已经成为锂离子电池研究中一个活跃的领域,同时,还有一些添加剂如防止过充电添加剂、控制电解液中水和HF的添加剂。添加剂用于锂离子电池的研究目标是进一步提高电池的整体电化学性能,实现锂离子电池的跨越式发展和市场创新,拓宽锂离子电池的应用范围。
结 语:
本文分析研究了添加剂在锂离子电池电解液中的作用,减小了电解液产生高温燃烧的危险性,提高了过度充电的保护性能,增强了电解液耐高压稳定性,但是电解液添加剂的研究空间依然很大,从这个意义上讲,多功能添加剂将成为未来添加剂发展的主体方向,要实现这一目标,必须正确把握该领域的發展方向,力争在选择、合成和优化添加剂性能方面取得新的突破。
[关键词]锂离子电池 电解液量 添加剂 阻燃 防过充 高电压电解液
中图分类号:TN611 文献标识码:A 文章编号:1009-914X(2017)01-0388-01
1.锂离子电池电解液
1.1 液体电解液
电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在较高的电位下和较高温度环境中不易发生分解,具有较高的离子导电率,而且对阴阳极材料必须是惰性的、不能侵腐它们。由于锂离子电池充放电电位较高而且阳极材料嵌有化学活性较大的锂,所以电解质必须采用有机化合物而不能含有水。但有机物离子导电率都不好,所以要在有机溶剂中加入可溶解的导电盐以提高离子导电率。
1.2 固体电解液
用金属锂直接用作阳极材料具有很高的可逆容量,其理论容量是石墨材料的十几倍,价格也较低,被看作新一代锂离子电池最有吸引力的阳极材料,但会产生枝晶锂。采用固体电解质作为离子的传导可抑制枝晶锂的生长,使得金属锂用作阳极材料成为可能。此外使用固体电解质可避免液态电解液漏液的缺点,还可把电池做成更薄、能量密度更高、体积更小的高能电池。固体聚合物电解质具有良好的柔韧性、成膜性、稳定性、成本低等特点,既可作为正负电极间隔膜用又可作为传递离子的电解质用。
2.电解液量的影响
2.1 电解液量对电池容量的影响
容量随着电解液量的增加而增加,容量最好的电池是隔膜刚好浸润。电解液量不够,正极片浸润不充分,隔膜未浸润,导致内阻偏大,容量发挥较低。电解液量的增加有利于充分利用活性物质的容量。由此说明,电池容量与电解液量有较大关系,电池容量随着电解液量的增加而增加,但最后基本趋于恒定。
2.2 电解液量对电池循环性能的影响
电解液量较少,导电率降低,循环后内阻增大快,加速电池局部电解液的分解或挥发,是电池循环性能的恶化速度逐渐加快。电解液过多导致电芯的副反应也相对增加,产气量较多,导致电芯的循环性能下降。再者电解液过量也浪费。由此可见电解液量对电池的循环性能影响非常明显,电解液过少或过多,都不利于电池的循环性能。
2.3 电解液量对电池安全性能的影响
电池的安全性能好主要是使用过程中不出现鼓壳和爆炸。电池爆炸的其中一个原因就是注液量达不到工艺要求。当电解液量过少时,电池内阻大,发热多。温度升高导致电解液迅速分解产气,隔膜融化,造成电池气胀短路爆炸。而当电解液量过多时,充放电过程产生的气体量大,电池内部压力大,壳体破裂,引起电解液泄露。电解液温度较高时,遇到空气而着火。
3.添加剂的研究
针对电解液存在诸多不安全因素,不仅会影响人们的人身安全,同时也降低了锂离子动力电池的使用寿命,所以电解液中加入添加剂这项研究十分必要。
3.1 电解液添加阻燃剂防止燃烧爆炸
阻燃机理源于高分子聚合物的阻燃机理,在不影响电池电化学性能的条件下,阻燃添加剂主要表现在如下几方面:添加剂受热分解,释放出捕获燃烧反应中的·OH(羟基)自由基,使按自由基链式反应进行的燃烧过程终止;加入无闪点或高闪点的阻燃添加剂来替代或部分替代易燃和热稳定性差的有机溶剂,使其本身的闪点提,燃烧性降低;添加剂吸热分解,利用热分解时生成的不燃性气体的气化热来降低电解液的温度,使其温度减慢上升。现在常用的阻燃剂是复合阻燃添加剂。
3.2 复合阻燃添加剂
在现代阻燃技术中,阻燃剂的复合技术是极其重要的发展方向。复合阻燃体系顾名思义,具有两种以上的阻燃元素,兼有不同种类阻燃剂的特性。几种阻燃元素的协同作用即可降低添加剂用量,又可提高阻燃效率,复合协同作用为电解液阻燃技术的深入研究开辟了广阔的前景。目前,用于锂离子电池电解液中复合阻燃添加剂主要是磷-氟类化合物,特别是氟代磷酸酯类化合物,此类化合物具有P和F两种阻燃元素,可以协同作用。
4.电解液加入添加剂,防止过度充电
过充电保护添加剂应该具有的特点:在有机电解液中具有良好的溶解性和足够快的扩散速度,能在大电流范围内提供保护作用;在电池使用温度范围内具有良好的稳定性;有合适的氧化电势,其值在电池的充电截止电压和电解液氧化的电势之间;氧化产物在还原过程中没有其他副反应,以免添加剂在过充过程中被消耗;添加剂对电池的性能没有副作用?。电解液防止过度充电通常有两种添加剂:电聚合添加剂和氧化还原电对添加剂。
电聚合添加剂的加入,使电池自动放电至安全状态,防止了电池的爆炸,同时该种添加剂聚合时产生大量气体,导致电池膨胀比较严重,所以电解液不宜加入;氧化还原电对添加剂对锂离子电池有很好的过充电保护作用。
5.电解液加入添加剂,可以增强耐高压
目前,常规碳酸酯溶剂体系碳酸丙烯酯,碳酸乙烯酯,碳酸二乙酯,碳酸二甲酯和碳酸甲基乙基酯组成的电解液基本能够满足高电压材料的充放电测试需要,但是锂盐浓度的增加会降低电解液的热稳定性。
5.1 氟代溶剂
由于氟原子具有强电负性和弱极性,致使氟代溶剂具有较高的电化学稳定性。目前氟代溶剂大多作为共溶剂或添加剂用在锂离子电池液态电解液中。通过研究一系列部分被氟取代或完全被氟取代的有机碳酸酯溶剂,证实了普通有机溶剂在引入氟元素之后,其物理性质发生了很大的变化,如溶剂的凝固点降低、抗氧化的稳定性提高、有利于在碳负极表面形成固体电解质界面膜。
5.2 腈类溶剂
一般含腈基的有机溶剂的反应产物是羧化物、醛或相应的有机胺,因此腈基溶剂在使用过程中是安全的,不用担心因剧毒的CN-离子的出现而影响使用。其中GLN和AND在众多二腈基溶剂中表现出最佳的热稳定性、低粘度和高介电常数等优点。但是,腈类溶剂与锂离子电池的石墨或金属锂等低电位负极相容性较差,极易在负极表面发生聚合反应,聚合产物会阻止?Li+的脱嵌添加适量的EC或LiBOB可以改善此类溶剂与低电位负极的相容性。室温下AND或GLN与共溶剂EC组成的电解液具有较高的离子电导率和较低的粘度,完全满足锂离子电池的充放电需求且使用后电池循环性能较好。
6.添加剂展望
随着近年来锂离子电池工业的迅速发展,新型添加剂的研究与开发已经成为锂离子电池研究中一个活跃的领域,同时,还有一些添加剂如防止过充电添加剂、控制电解液中水和HF的添加剂。添加剂用于锂离子电池的研究目标是进一步提高电池的整体电化学性能,实现锂离子电池的跨越式发展和市场创新,拓宽锂离子电池的应用范围。
结 语:
本文分析研究了添加剂在锂离子电池电解液中的作用,减小了电解液产生高温燃烧的危险性,提高了过度充电的保护性能,增强了电解液耐高压稳定性,但是电解液添加剂的研究空间依然很大,从这个意义上讲,多功能添加剂将成为未来添加剂发展的主体方向,要实现这一目标,必须正确把握该领域的發展方向,力争在选择、合成和优化添加剂性能方面取得新的突破。