论文部分内容阅读
电主轴是高速数控机床核心功能部件,电主轴损坏基本是电主轴发热引起的.电主轴温度场具有复杂的非线性特征,神经网络在处理非线性系统温度预测方面得到了广泛的研究,神经网络与传统模型相比具有更好的适时预报性和持久性.论文利用遗传算法优化BP神经网络建立电主轴表面温度预测模型.预测结果表明,未优化的BP神经网络与遗传神经网络预测误差相对比,遗传神经网络对电主轴表面温度预测具有更高的预测精度和稳定性.