脉冲红外热波用于半透明涂层厚度测量

来源 :红外与激光工程 | 被引量 : 0次 | 上传用户:nx002
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了快速、准确地测量半透明涂层的厚度,提出了一种基于脉冲红外热波的测量方法.建立了半透明涂层半无限大脉冲热传导简化理论模型和半透明涂层的脉冲红外加热双层物理模型,理论分析和数值计算结果表明:半透明涂层的厚度与表面温度的峰值时刻在对数坐标上呈现线性关系,利用这种线性关系可以直接测量半透明涂层的厚度,而不再需要在样品表面喷涂黑漆以避免半透明性的影响.实验上建立脉冲红外热波系统并制作了厚度连续变化的半透明涂层试件,得到的厚度误差小于5%.结果显示该技术具有快速和非接触式测量半透明涂层厚度的潜力.
其他文献
信息超表面由于其强大的处理空间电磁波的能力,成为国内外物理和信息领域的研究热点之一.文中主要介绍信息超表面在无线通信领域的一系列研究进展.信息超表面能实时操控电磁波及直接处理数字编码信息,并进一步对信息进行感知、理解,甚至记忆、学习和认知,这使其在无线通信领域展现出巨大潜能.文中首先介绍信息超表面在承担无线中继职能时所涉及的信道建模研究进展、以及其对信道的改善作用;其次介绍信息超表面在新体制发射机中的应用,通过对入射到信息超表面上的载波进行幅度或相位调制,实现了多种简化的发射机架构.此外,文中还介绍了利用
具有高功率、高光束质量的双波长激光器在精密光谱、共振干涉测量和激光雷达等领域有着重要的应用.但是受到激光工作物质固有的光谱和增益特性制约,通过传统的粒子数反转激光器难以直接获得高功率的双波长激光输出,因此通常需要结合非线性光学频率变换技术将常规的单一波长高功率激光拓展至一个或若干个特殊波段.受激拉曼散射作为一种三阶非线性效应,具有频移大、自相位匹配和光束净化等优点,是实现高效率、高光束质量波长转换有效手段.利用具有宽光谱透过范围(>0.23 μm)、超高热导率(>2000 W·m-1·K-1)和大拉曼频移
卷积作为一种简单的线性平移不变运算,被广泛应用于图像处理的各个领域,其衍生出的卷积神经网络更是在人工智能领域中大放异彩.为了应对后摩尔时代AI推理芯片算力受限的问题,光学神经网络应运而生.光学卷积神经网络作为其中一个重要的研究热点对光学神经网络的发展起到了重要的推动作用.设计了一种光学卷积系统,基于微透镜阵列与透镜组成的匀光光路对光场所携带的图像做二维卷积,该系统可以光学实现图像平滑和锐化.当使用空间光调制器来投影卷积核和输入图像时,系统可以实现各种步长的三种卷积形式,也可以通过多次投影/平铺实现多通道的
基于条纹投影的三维形貌测量广泛应用于工业制造、质量检测、生物医疗、航空航天等领域.然而在高速测量的场景下,由于光栅图像的采集过程曝光时间短,三维重建结果通常会受到较为严重的图像噪声干扰.近年来,深度学习技术在计算机视觉等领域得到了广泛应用,并且取得了巨大的成功.受此启发,提出了一种基于学习的光栅图像噪声抑制方法.首先构建了一个基于U-net的卷积神经网络.其次在训练过程中,构建的神经网络学习从含有噪声的条纹图像到对应高质量包裹相位之间的映射关系.当经过适当训练,该网络可从含有噪声的条纹图像中准确恢复相位信
在高精度的干涉检测中,干涉仪系统误差的标定越来越重要.根据立式斐索干涉仪的结构特点,采用液面作为平面基准,对参考平晶的自重变形量以及夹持形变进行补偿校准,对其系统误差进行标定.理论上,液面和地球半径的曲率相同,可认作平面基准对立式结构干涉仪的系统误差进行标定.针对Φ300 mm立式斐索干涉仪,研究了不同的液体粘度、液体厚度、干涉腔长和环境温度对液面测量的影响,构建了可靠的液面基准.通过液面基准,指导干涉仪参考平晶的装调校准,对其系统误差进行补偿,干涉仪精度达到0.035λ,优于λ/25.为了进一步验证液面
利用红外超快涡旋激光脉冲与气体介质相互作用可以产生携带轨道角动量的极紫外高次谐波.采用含有径向节点的拉盖尔-高斯(LG)光束作为驱动光,利用定量重散射模型计算单原子响应,通过求解谐波场在介质中传播的三维麦克斯韦方程以及在傍轴近似下的惠更斯积分,分别获得近场和远场高次谐波的强度和相位分布.结果表明:随着驱动光的径向节点数增加,高次谐波的强度分布呈现多环结构,相位分布上出现节点结构,强度分布的空间范围在近场减小,而在远场增大.相位匹配分析显示,短轨道和长轨道高次谐波的空间相干长度分布图对驱动激光的模式非常敏感
在简要总结了各种检测大口径反射镜难点的基础上,为了实现30m望远镜(TMT)超大口径第三反射镜的高精度检测,提出了一种融合五棱镜扫描技术和子孔径拼接测试技术的新方法.大口径反射镜分阶段依次进行了五棱镜扫描测试和子孔径拼接检测,对该技术的基本原理和基础理论进行了分析和研究,制定了检测30 m望远镜第三反射镜(口径为3.5 m×2.5 m)的方案,对其测试流程、五棱镜设计、五棱镜扫描像差拟合、拼接最优化算法等进行了详细分析,并对30m望远镜第三反射镜的原理镜进行了实验验证,其最终拼接检测面形的均方根值(RMS
自由曲面设计自由度多、面型表征能力强等优势使成像光学系统突破了传统面型表征和系统结构的限制,在进一步提高成像质量的同时可以实现大视场、大孔径、小型化、轻量化等设计目标.良好的初始结构可以充分发挥自由曲面对像差的校正能力,提高系统设计效率.与共轴光学系统相比,自由曲面成像光学系统设计存在可参考样例少、像差理论尚不完善等问题,其初始结构的构造与求解仍然是先进光学设计领域的前沿热点问题之一.结合课题组多年的研究心得,探讨了现有的自由曲面成像光学系统初始结构设计方法,依据自由曲面构造原理将其分为同轴系统离轴化法、
非接触式三维视觉测量广泛应用在工业制造质量检测中.针对工业金属零部件检测的应用场景,提出了一种基于线结构光旋转扫描和光条纹修复的三维视觉测量方案.首先,通过基于线结构光投影的计算机视觉技术,设计了线结构光旋转扫描视觉子系统,并对工业相机、线结构光平面和旋转扫描中心轴进行标定;然后,针对采集到的光条纹图像存在低灰度区域缺失数据的问题,提出了基于缺失区域自适应灰度增强的光条纹中心线提取算法,有效修复了被测零部件的线结构光投影条纹;同时,利用文中提出的线结构光三维视觉测量方案,通过重建标准球棒的表面点云计算两球
针对高功率固体激光装置反射镜表面的颗粒引起的损伤问题,分别进行离线实验和在线实验,采用风刀及暗场成像系统相结合研究表面颗粒去除率.研究结果表明:当风刀偏转角度为0°且风刀距离大口径反射镜镜面10mm时,对灰尘颗粒的去除效果最好,可达96.5%,而对相同尺寸的Al2O3颗粒和Fe颗粒效果次之,对SiO2颗粒效果最差,在线平均去除率可达84.9%.通过对反射镜表面颗粒污染物的在线沉积规律研究表明采用风刀吹扫技术一周洁净一次可实现反射镜表面长期洁净,该技术可推广至大口径高能激光装置及未来超大型高功率激光装置中.