论文部分内容阅读
现有神经网络方法对时间向量序列数据的处理是通过单点进行的,割裂了数据间的关联性。为此,利用隐式曲线的构造原理,通过对时间向量序列的变换,提出了一种整体预测时间向量序列的测井数据的方法。神经网络隐式整体预测方法的步骤是:①将数据变换为封闭曲线,构造约束点以简化神经网络的输入与输出;②利用神经网络的隐式方法,通过智能学习和仿真模拟,得到封闭的预测曲线;③经过变换得到最终的预测曲线。实验证明了该方法的有效性。