论文部分内容阅读
针对肺癌临床诊断中缺乏定量评估方法等问题,本研究采用影像组学方法构建基于支持向量机(SVM)的肺肿瘤良恶性分类预测模型。首先介绍了影像组学的定义、处理流程。实验样本选自公开数据集LIDC上的816例肺癌患者的CT影像数据。先采用中心池化卷积神经网络分割法提取感兴趣区(ROI),然后分别采用影像组学特征提取包Pyradiomics和FSelector特征筛选模型进行特征提取和特征降维,最后通过SVM构建肺肿瘤良恶性分类预测模型。模型对大于5 mm肺小结节的良恶性分类的预测准确率为80.4%,曲线下面积(AU