Low-temperature synthesis of nitrogen doped carbon nanotubes as promising catalyst support for metha

来源 :能源化学 | 被引量 : 0次 | 上传用户:zhaojie25
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The electrochemical methanol oxidation reaction (MOR) is of paramount importance for direct methanol fuel cell (DMFC) application, where efficient catalysts are required to facilitate the complicated multi-ple charge transfer process. The catalyst support not only determines the dispersion status of the cata-lysts particles, but also exerts great influence on the electronic structure of the catalysts, thereby alter-ing its intrinsic activity. Herein, we demonstrated that nitrogen atoms, assisted by the pre-treatment of carbon matrix with oxidants, can be easily doped into carbon nanotubes at low temperature. The ob-tained nitrogen-doped carbon nanotubes can effectively improve the dispersion of the supported plat-inum nanoparticles and facilitate the MOR by modifying the electronic structure of platinum atoms, through catalyst-support interaction.
其他文献
Two novel asymmetric organic small molecules of IT(2FBT-T3Cz)2 and IT(2FBT-TT3Cz)2 with an indenothiophene (IT) central donor core,fluorinated benzothiadiazole (2FBT) as acceptor and 3-carbazole (Cz) unit as terminal group were designed and synthesized as
Various agricultural crop residues including corn stover,corn cob,and sorghum stalk with a moisture content of 75 wt% were subjected to a long pretreatment (12-60h) with supercritical CO2 (scCO2),at low temperature (50-80℃) and a pressure of 17.5-25.0MPa.
A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane (PEM) was developed to electrochemically convert CO2 into organic compounds.Two different Cu-based cathode catalysts (Cu and Cu-C) were prepared by physical vapo
Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reacti
Carbon materials are considered to be one of the most promising anode materials for sodium-ion batteries (SIBs),but the well-ordered graphitic structure limits the intercalation of sodium ions.Besides,the sluggish intercalation kinetics of sodium ions imp
A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additional activation reagents was fabricated
Subcritical and supercritical water gasification of petroleum coke and asphaltene was performed at variable temperatures (350-650 ℃),feed concentrations (15-30 wt%) and reaction times (15-60 min).Nickel-impregnated activated carbon (Ni/AC) was synthesized
Fiber supercapacitor (FSC) is a promising power source for wearable/stretchable electronics and high capacitive performance of FSCs is highly desirable for practice flexible applications.Here,we report a composite of manganese dioxide (MnO2) and activated
Sodium-ion batteries (SIBs) have emerged as a promising alternative to Lithium-ion batteries (LIBs) for energy storage applications,due to abundant sodium resources,low cost,and similar electrochemical performance.However,the large radius of Na+ and high
Lots of efforts have been done on different porous carbon materials as cathode for Lithium-sulfur (Li-S) battery.However,seldom researches have been done on the relationship between cathode thickness and electrochemical performance.Our work investigates t