论文部分内容阅读
AIM: To investigate the role of sorafenib(SFN) in autophagy of hepatocellular carcinoma(HCC). We evaluated how SFN affects autophagy signaling pathway in human HCC cell lines. METHODS: Two different human HCC cell lines, Hep3 B and Huh7, were subjected to different concentrations of SFN. Cell viability and onset of apoptosis were determined with colorimetric assay and immunoblotting analysis, respectively. The changes in autophagy-related proteins, including LC3, ULK1, AMPK, and LKB, were determined with immunoblotting analysis in the presence or absence of SFN. To assess autophagic dynamics, autophagic flux was measured with chloroquine, a lysosomal inhibitor. The autophagic responsiveness between different HCC cell lines was compared under the autophagy enhancing conditions.RESULTS: Hep3 B cells were significantly more resistant to SFN than Huh7 cells. Immunoblotting analysis revealed a marked increase in SFN-mediated autophagy flux in Huh7 cells, which was, however, absent in Hep3 B cells. While both starvation and rapamycin enhanced autophagy in Huh7 cells, only rapamycin increased autophagy in Hep3 B cells. Immunoblotting analysis of autophagy initiation proteins showed that SFN substantially increased phosphorylation of AMPK and consequently autophagy in Huh7, but not in Hep3 B cells.CONCLUSION: The autophagic responsiveness to SFN is distinct between Hep3 B and Huh7 cells. Resistance of Hep3 B cells to SFN may be associated with altered autophagy signaling pathways.
METHODS: Two different human HCC cell lines, Hep3 B and Huh7, were subjected to autophagy of hepatocellular carcinoma (HCC). to different concentrations of SFN. Cell viability and onset of apoptosis were determined with colorimetric assay and immunoblotting analysis, respectively. respectively. The changes in autophagy-related proteins, including LC3, ULK1, AMPK, and LKB, were determined with immunoblotting analysis in the presence or To assess autophagic dynamics, autophagic flux was measured with chloroquine, a lysosomal inhibitor. The autophagic responsiveness between different HCC cell lines was compared under the autophagy enhancing conditions .RESULTS: Hep3 B cells were significantly more resistant to SFN than Huh7 cells . Immunoblotting analysis revealed a marked increase in SFN-mediated autophagy flux in Huh7 cells, which was, however, absent in Hep3 B While both starvation and rapamycin enhanced autophagy in Huh7 cells, only rapamycin increased autophagy in Hep3 B cells. Immunoblotting analysis of autophagy initiation proteins showed that SFN substantially increased phosphorylation of AMPK and autophagy in Huh7, but not in Hep3 B cells. CONCLUSION : The autophagic responsiveness to SFN is distinct between Hep3 B and Huh7 cells. Resistance of Hep3 B cells to SFN may be associated with altered autophagy signaling pathways.