论文部分内容阅读
针对线性子空间不足以描述头部视角空间非线性变化等因素影响人脸视角流形的精确建模问题,提出一种新的视角流形建模方法,并从理论上将该方法与经典的流形学习建模方法及概念驱动的视角流形建模方法进行比较,通过基于非线性张量分解的人脸及视角识别实验比较视角流形对识别结果的影响,从而给出视角流形的有效性比较.实验结果表明,本文提出的视角流形建模方法比概念驱动的视角流形和TensorFace中的线性视角系数均有更好的识别效果.