【摘 要】
:
日益严重的能源危机和环境污染问题使得探索清洁的可再生能源载体及减少对传统化石燃料的过度依赖成为人们面临的一项重要任务.因此,各种可持续能源如太阳能、风能、海洋能和生物质能等得到了广泛研究并取得了一定的进展.然而,这些能源因存在间歇性和不稳定性等缺点阻碍了其实际应用.近年,氢气作为一种能源载体,以其高能量密度和无碳排放的优点引起了人们的广泛关注,被认为是缓解日益严重的污染问题的最有前途的环保能源.对比目前采用的天然气热解和煤炭气化等传统制氢策略,电催化水裂解由于催化效率高,制氢纯度高和不产生温室气体,被认为
【机 构】
:
生态化工教育部重点实验室, 青岛科技大学化学与分子工程学院, 山东青岛266042;生态化工教育部重点实验室, 青岛科技大学化学与分子工程学院, 山东青岛266042;山东省海洋环境腐蚀与安全防护工程
论文部分内容阅读
日益严重的能源危机和环境污染问题使得探索清洁的可再生能源载体及减少对传统化石燃料的过度依赖成为人们面临的一项重要任务.因此,各种可持续能源如太阳能、风能、海洋能和生物质能等得到了广泛研究并取得了一定的进展.然而,这些能源因存在间歇性和不稳定性等缺点阻碍了其实际应用.近年,氢气作为一种能源载体,以其高能量密度和无碳排放的优点引起了人们的广泛关注,被认为是缓解日益严重的污染问题的最有前途的环保能源.对比目前采用的天然气热解和煤炭气化等传统制氢策略,电催化水裂解由于催化效率高,制氢纯度高和不产生温室气体,被认为是高效、环保、可持续的制氢策略.电催化水裂解由两个独立的半反应组成,分别是析氢反应和析氧反应.析氢反应作为水裂解的一个半反应,在降低制氢成本及提高产氢催化效率方面起着关键作用.然而,目前的核心问题之一是要开发高效的析氢电催化剂,以加快反应速度.目前,铂和铂基纳米材料被认为是高效的析氢电催化剂,但是其稀缺性和高成本阻碍了大规模实际应用.金属磷化物由于具有较高的本征活性并且在不同的电解质中都具有良好的电催化析氢性能,被证明是一种优良的析氢电催化剂.此外,与普通催化剂相比,金属磷化电催化剂还具有合成简便、效率高、成本低、省时等优点.本文详细介绍了近年人们在金属磷化物用于电催化析氢研究中取得的进展.首先,介绍了电催化析氢反应机理,金属磷化物的结构及作用,并对其优缺点进行了总结;随后,综述了金属磷化物的合成方法,包括后处理、原位生成和电沉积策略,并对不同方法进行了比较和讨论.此外,从元素掺杂、界面工程、空穴工程、修饰特定载体、构建特定纳米结构、设计双或多金属磷化物和其他发展的新方法等七个方面详细总结了促进金属磷化物电催化活性的多种策略,并进行了对比和讨论.最后,归纳了金属磷化物在电催化析氢应用中存在的问题和面临的挑战,并对未来的研究发展提出了展望.“,”Among the sustainable energy sources, hydrogen is the one most promising for alleviating the pol-lution issues related to the usage of conventional fuels, as it can be produced in an efficient and eco-friendly way via electrocatalytic water splitting. The hydrogen evolution reaction (HER, a half-reaction of water splitting) plays a pivotal role in decreasing the price and increasing the cata-lytic efficiency of hydrogen production and is efficiently promoted by metal phosphides in different electrolytes. Herein, we summarize the recent advances in the development of metal phosphides as HER electrocatalysts, focus on their synthesis (post-treatment, in situ generation, and electrodeposi-tion methods) and the enhancement of their electrocatalytic activity (via elemental doping, interface and vacancy engineering, construction of specific supports and nanostructures, and the design of bi-or polymetallic phosphides), and highlight the crucial issues and challenges of future development.
其他文献
在“文化强国”的国家战略和“文旅融合”的行业发展背景下,国家文化公园作为我国独有的一种全新的概念应运而生。对于大运河国家文化公园来说,旅游产品是大运河文化遗产保护与传承的重要载体,旅游产品合理开发是推动文化动态传承、繁荣文艺创作、促进文化品牌传播的重要抓手,本文针对大运河国家公园枣庄段运河文化旅游产品发展的现状与问题,提出旅游产品提升的策略,对国家文化公园旅游产品开发具有初步的探索意义。
早期的油气水三相流测井解释方法需要有密度参数,但放射性密度计早已停用,而压差密度计在流量100 m3/d以下的套管内,测量密度的分辨率极低无法应用.提出了一种基于光纤探针、阻抗传感器和涡轮流量计的组合测井仪,对该仪器在油气水三相流模拟实验装置上进行实验,分别建立光纤探针、涡轮流量计及阻抗传感器在三相流下的响应规律图版,通过图版插值的方法建立油气水三相流解释方法.实验结果表明,不同气量下涡轮响应与光纤探针响应关系曲线、涡轮响应与油水两相流量关系曲线、油水两相含水率与油水两相流量关系曲线,可用于解释气相流量、
This special issue is dedicated to Professor Qin Xin on the occasion of one year of his passing away. This is in recognition of his unique and remarkable contributions to the application of in-situ molecular spectroscopy for catalysis study, the explorati
氧化铈由于在氧化和还原气氛下具有快速Ce4+/Ce3+氧化还原循环作用,使其具有优异的储放氧能力,不仅可以分散和稳定金属粒子,还可在界面处与金属物种发生化学键合,并形成活性位点,因此已被广泛应用于多个催化反应体系,且表现出显著的形貌效应.通过对氧化铈形貌进行调控,使其暴露特定(111)、(110)和(100)晶面,已成为调节金属-氧化铈相互作用强度及金属物种电子、几何结构,提高催化性能的有效策略,但对其机制及活性位结构还没有清晰的认识.我们以氧化铈纳米粒子和纳米
二氧化铈作为催化剂、催化剂载体和助剂被广泛应用于各类氧化还原的催化反应中,是多相催化领域中至关重要的金属氧化物.氧化铈因具有丰富的缺陷结构、较强的氧化还原能力以及异常的酸碱功能等独特性质,在催化领域中非常重要.在分子层面上理解氧化铈的储氧能力、氧化还原效应和酸碱性质对建立催化构效关系尤为重要,是有效合理地改善和设计铈基催化材料的关键.在诸多的表征手段中,光谱在氧化铈结构和表面性质的研究中显示出无可争议的优势,可以提供原子和分子层面的化学信息.本文总结了各种光谱方法(包括光学、X射线、中子、电子和核磁谱学)
喹喔啉酮作为重要的含氮杂环骨架,广泛应用于抗菌化合物、抗肿瘤药物、半导体材料中.因此,开发新方法合成不同官能团化喹喔啉酮以丰富其结构多样性在近年来广受关注.在众多合成方法中,喹喔啉酮的直接C–H官能团化是一类步骤经济性较高、简便高效地构建喹喔啉酮衍生物的重要方法.近年来,光催化、电催化和光电催化技术已发展成为现代有机合成中强有力的绿色合成工具,可以有效利用光能或者电能促进有机化学转化,减少传统有机反应中的高能耗.过去几年,化学工作者在光/电催化喹喔啉酮的直接C–H官能团化反应方面进行了大量研究,开发了系列
Producing biofuels from renewable biomass resources is considered to be an effective way to reduce carbon emissions and is helpful for establishing sustainable society [1]. Bio-methane (CH4) is a promising and available clean energy in the future owing to
为节能减排和能源结构调整以快速实现“碳中和”,发展可再生、清洁与绿色的能源以替代传统化石能源已成为当今世界高质量发展的重要共识.生物质能作为一种典型的可再生能源,具有储量丰富、分布广泛、可有效转化成各种化工原料和燃料等特点逐步受到广泛关注并成为科研热点.木质素是生物质的重要组成部分,其含氧量低、热值高,可转化成高热值燃料;同时,木质素富含芳香结构单元,可以转化成各类高附加值化工原料及医药中间体.木质素解聚及其对应单体升级转化是木质素高效转化利用的关键技术.当前,传统热催化是其主要应用技术手段.然而,该类方
电解水制氢因具有清洁高效的优点而被认为是大规模生产氢能最有希望的技术之一.然而,电解水半反应之一的析氧反应(OER)需经历复杂且动力学缓慢的4电子转移过程.加之热力学上的阻碍,OER实际需要的电位远大于1.23 V的理论值,导致其能耗高,限制了电解水的效率和商业化应用.因此,亟待开发高效的OER电催化剂.管状结构具有较高的比表面积、充分暴露的活性位点和丰富的短路径扩散通道,是一种理想的电催化结构.同时,Co3O4基材料因其制备容易、成本低和OER电催化学活性较高
将廉价的碳源(CO2)转化为化石燃料可缓解由于温室气体引起的气候问题.CH4/CO2重整(CRM)是CO2转化利用的有效途径之一,要实现这个过程的关键是研制高效的光响应催化剂.本文采用WO3负载的第Ⅷ族金属催化剂、引入光照能量来活化CO2,利用光热协同催化CRM.研究结果表明,光学材料WO3负载的第Ⅷ族金属催化剂在可见光辅助下的催化活性是热驱动条件下的1.4~2.4倍,与等离子体金催化剂的活性增强率(1.7倍)相当.进一步以不同波段的可见光为光源,对WO3负载的第Ⅷ族金属催化剂上催化活性提高的原因进行了研