论文部分内容阅读
Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called clonal selection algorithm, to solve the multi-user detection problem in code-division multipleaccess communications system based on the maximum-likelihood decision rule. Through proportional cloning, hypermutation, clonal selection and clonal death, the new method performs a greedy search which reproduces individuals and selects their improved maturated progenies after the affinity maturation process. Theoretical analysis indicates that the clonal selection algorithm is suitable for solving the multi-user detection problem. Computer simulations show that the proposed approach outperforms some other approaches including two genetic algorithm-based detectors and the matched filters detector, and has the ability to find the most likely combinations.
Artificial immune systems (AIS) are a kind of new computational intelligence methods which draw inspiration from the human immune system. In this study, we introduce an AIS-based optimization algorithm, called solve clonal selection algorithms, to solve the multi-user detection problem in code-division multiple access communications system based on the maximum-likelihood decision rule. Through proportional cloning, hypermutation, clonal selection and clonal death, the new method performs a greedy search which reproduces individuals and selects their improved maturated progenies after the affinity maturation process. analysis of that the clonal selection algorithm is suitable for solving the multi-user detection problem. Computer simulations show that the proposed approach outperforms some other approaches including two genetic algorithm-based detectors and the matched filters detector, and has the ability to find the most like combinations.