论文部分内容阅读
研究火电厂锅炉主蒸汽温度控制优化问题,针对主汽温对象具有大惯性、大迟延、时变性和非线性系统,由于存在实时性和实时性差,传统的PID控制难以获得很好的控制效果,提出一种混沌粒子群优化神经网络的主汽温控制方法。采用RBF神经网络对PID参数进行在线整定,并通过混沌粒子群算法对RBF神经网络初始参数进行优化,不仅具有RBF神经网络的自适应能力,同时具有常规PID串级控制的特性,增强了系统对不确定因素的适应性。仿真结果表明,控制算法具有较好的鲁棒性和控制品质,抗干扰能力强,可为锅炉主蒸汽温度优化控制提供参考。