论文部分内容阅读
摘 要:在统计学及其相关课程中,关于差异指标内容的教学要点,一是其意义,二是种类。差异指标的种类很多,各有自己的计算方法和特点。在教学中要注意两点:正确理解不同指标之间的差异;正确理解同一差异指标值在实际背景中释义的差异。
关键词:差异指标 差异指标的差异
在统计学及其相关课程中,有关差异指标(也称“差异量数”,下同)的教学要点有二:一是差异指标的意义,二是差异指标的种类。前者的要义可概括为:综合反映总体(或样本)各个单位标志值(或数据)的差异程度(或离中趋势、离散程度等);后者的意思是说:差异指标的种类很多,它们各有自己的计算方法和特点。如果我们把后者的这种不同种类、特点也统称做“差异”的话,那么,我们在统计学有关学科的教学过程中,就应把这两个方面的“差异”向学生交代清楚,使他们对差异指标之“差异”有个客观、全面而准确的理解,从而避免由于理解的片面性得出错误的判断。
一、正确理解不同差异指标之间的“差异”
人教版初中代数第三册教师教学用书第171页有这样一段话:“在表示各数据与其平均数的偏离程度时,……为什么对各数据与其平均数的差不取其绝对值,而要将它们平方,……这主要是因为在很多问题里含有绝对值的式子不便于计算,且在衡量一组数据波动大小的‘功能’上,方差更强些。例如有两组数据:
甲 9 ,1 ,0 ,-1 ,-9;
乙 6 ,4 ,0 ,-4 ,-6。
从直观上看,甲组数据的波动要比乙组数据大些,但它们的平均差都是4,区分不出其波动大小;而甲组数据的方差是32.8,乙组数据的方差是20.8,用方差可将它们的波动大小区别开来。”
其实,上述的一段描述是在告诉读者这样一个命题:在平均差与方差(或标准差)之间,方差(或标准差)表示数据波动大小的“功能”强于平均差。
这个命题是真的么?请看下一个例子:
在一次射击比赛中,甲乙两射手成绩记录如下:
甲 9 ,7 ,9 ,9 ,7 ,7 ,7 ,9;
乙 6 ,8 ,8 ,8 ,10 ,8 ,8 ,8 。
计算他们的平均值、标准差、平均差(如表)。
在這里,两组数据的标准差都是1,区分不出波动的大小,但甲组的平均差为1,乙组的平均差为0.5,我们通过平均差得出结论:甲组成绩的波动性大于乙组的波动性。于是又否定了上述命题,并得到一个于完全相反的命题(叙述从略)。
显然,若综合以上两种(假)命题,取其正确部分的话,那么,正确命题应为:
平均差和标准差(或方差),在所反映的总体(或样本)单位标志值的差异性上具有一致性,但区分这种差异大小的“功能”谁更强些不是绝对的。
那么,为什么人们在学习、应用统计学的多个差异指标时更多关注的是标准差呢?主要有以下理由:(1)反映灵敏,它随任何一个数据的变化而变化;(2)严密确定,一组数据的标准差有确定的值;(3)适合代数运算,可以将几个标准差合成一个总的标准差;(4)可以用样本数据推断总体差异量;(5)在计算其它统计量时,如差异系数、相关系数、标准分数等,都需要标准差。
二、正确理解同一个差异指标值在实际背景中释义的“差异”
某社出版的数学辅导教材有题如下:
甲乙两组学生各有8人,参加某门学科测试成绩如表2(100分制),请比较两组学生的成绩哪组较好一些。
因为 ,甲组成绩的波动比乙组小一些,所以甲组学生的成绩较好一些。
笔者认为:标准答案制订者是建立在“组内学生之间学习差异越小,成绩越好”的教育教学理念下做出这一判断及结论的。要知道,在新课程的教育教学理念下是允许学生与学生之间存在差异的,倡导学生在学习各门课程时敢于“冒尖”、创新,不搞“一刀切”,要让学生在全面发展的基础上培养个人特长。在评价学生时,以多元智能理论为依据,多方法、多手段、多尺度地考查学生的学习效果。基于此,我们又可以认为乙组的成绩好于甲组。甚至,倘若再对照例题中两组学生的其他指标情况,比如优秀率:若规定90分以上为优秀,则两组持平;若规定85分以上为优秀,则甲组为1/8,乙组为1/2,也会得出乙组的成绩好于甲组的结论。
总之,我们在用统计中差异指标的“差异”值解释现实现象并下结论时,不可以将教材中所说的变异指标值愈小,对相应平均指标的代表性愈好、稳定性也好,机械地认为“一切都好”,这是对差异指标本质的误解和歪曲。
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”
关键词:差异指标 差异指标的差异
在统计学及其相关课程中,有关差异指标(也称“差异量数”,下同)的教学要点有二:一是差异指标的意义,二是差异指标的种类。前者的要义可概括为:综合反映总体(或样本)各个单位标志值(或数据)的差异程度(或离中趋势、离散程度等);后者的意思是说:差异指标的种类很多,它们各有自己的计算方法和特点。如果我们把后者的这种不同种类、特点也统称做“差异”的话,那么,我们在统计学有关学科的教学过程中,就应把这两个方面的“差异”向学生交代清楚,使他们对差异指标之“差异”有个客观、全面而准确的理解,从而避免由于理解的片面性得出错误的判断。
一、正确理解不同差异指标之间的“差异”
人教版初中代数第三册教师教学用书第171页有这样一段话:“在表示各数据与其平均数的偏离程度时,……为什么对各数据与其平均数的差不取其绝对值,而要将它们平方,……这主要是因为在很多问题里含有绝对值的式子不便于计算,且在衡量一组数据波动大小的‘功能’上,方差更强些。例如有两组数据:
甲 9 ,1 ,0 ,-1 ,-9;
乙 6 ,4 ,0 ,-4 ,-6。
从直观上看,甲组数据的波动要比乙组数据大些,但它们的平均差都是4,区分不出其波动大小;而甲组数据的方差是32.8,乙组数据的方差是20.8,用方差可将它们的波动大小区别开来。”
其实,上述的一段描述是在告诉读者这样一个命题:在平均差与方差(或标准差)之间,方差(或标准差)表示数据波动大小的“功能”强于平均差。
这个命题是真的么?请看下一个例子:
在一次射击比赛中,甲乙两射手成绩记录如下:
甲 9 ,7 ,9 ,9 ,7 ,7 ,7 ,9;
乙 6 ,8 ,8 ,8 ,10 ,8 ,8 ,8 。
计算他们的平均值、标准差、平均差(如表)。
在這里,两组数据的标准差都是1,区分不出波动的大小,但甲组的平均差为1,乙组的平均差为0.5,我们通过平均差得出结论:甲组成绩的波动性大于乙组的波动性。于是又否定了上述命题,并得到一个于完全相反的命题(叙述从略)。
显然,若综合以上两种(假)命题,取其正确部分的话,那么,正确命题应为:
平均差和标准差(或方差),在所反映的总体(或样本)单位标志值的差异性上具有一致性,但区分这种差异大小的“功能”谁更强些不是绝对的。
那么,为什么人们在学习、应用统计学的多个差异指标时更多关注的是标准差呢?主要有以下理由:(1)反映灵敏,它随任何一个数据的变化而变化;(2)严密确定,一组数据的标准差有确定的值;(3)适合代数运算,可以将几个标准差合成一个总的标准差;(4)可以用样本数据推断总体差异量;(5)在计算其它统计量时,如差异系数、相关系数、标准分数等,都需要标准差。
二、正确理解同一个差异指标值在实际背景中释义的“差异”
某社出版的数学辅导教材有题如下:
甲乙两组学生各有8人,参加某门学科测试成绩如表2(100分制),请比较两组学生的成绩哪组较好一些。
因为 ,甲组成绩的波动比乙组小一些,所以甲组学生的成绩较好一些。
笔者认为:标准答案制订者是建立在“组内学生之间学习差异越小,成绩越好”的教育教学理念下做出这一判断及结论的。要知道,在新课程的教育教学理念下是允许学生与学生之间存在差异的,倡导学生在学习各门课程时敢于“冒尖”、创新,不搞“一刀切”,要让学生在全面发展的基础上培养个人特长。在评价学生时,以多元智能理论为依据,多方法、多手段、多尺度地考查学生的学习效果。基于此,我们又可以认为乙组的成绩好于甲组。甚至,倘若再对照例题中两组学生的其他指标情况,比如优秀率:若规定90分以上为优秀,则两组持平;若规定85分以上为优秀,则甲组为1/8,乙组为1/2,也会得出乙组的成绩好于甲组的结论。
总之,我们在用统计中差异指标的“差异”值解释现实现象并下结论时,不可以将教材中所说的变异指标值愈小,对相应平均指标的代表性愈好、稳定性也好,机械地认为“一切都好”,这是对差异指标本质的误解和歪曲。
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”