论文部分内容阅读
In this work, results on the study of the structure and photoluminescence (PL) properties of SiOxNy thin films are presented. The films were deposited at room temperature using a dual-ion-beam co-sputtering system. The XRD and TEM results show that the deposited films have an amorphous structure. In the XPS result, we find N 1s spectra consist of one symmetric single peak at 397.8 eV, indicating that the nitrogen atoms are mainly bonded to silicon. It is in agreement to the result of FTIR. In SiOxNy films, an intense single PL peak at 590 nm is observed. Furthermore, with the increase of the N content in the SiOxNy films, the intensity of the PL peak at 590 nm increases a lot. The PL peak of 590 nm is suggested to originate from N-related defects.
The work was conducted on the study of the structure and photoluminescence (PL) properties of SiOxNy thin films are presented. The films were deposited at room temperature using a dual-ion-beam co-sputtering system. The XRD and TEM results show that the deposited films have an amorphous structure. In the XPS result, we find N 1s spectra consist of one symmetric single peak at 397.8 eV, indicating that the nitrogen atoms are mainly bonded to silicon. It is in agreement to the result of FTIR. In The PL peak at 590 nm is found. The PL peak at 590 nm is suggested to originate from N-related defects.