论文部分内容阅读
数形结合思想是数学思想的一种.数形结合的思想,不仅可以应用在解决数学问题的过程中,还可以应用到数学学习过程中.数学教师要多引导学生用数形结合的思想学习数学知识.如果学生能用这种宏观的数学思想来看待数学知识,就会对数学知识有更深刻的理解.
一、应用数形结合的思想,帮助学生理解数学概念
概念教学是数学教学中的重要内容之一,部分教师在概念教学中常常给学生灌输抽象的概念,部分学生不能完全理解教师所说的数学概念,或者对数学概念的理解有岐义.如果学生不能正确理解数学概念,在应用数学概念知识时就会犯下错误.图形直观性强,数学教师可用数形结合的方法,帮助学生理解数学概念.
高中数学运算问题规律性很强,如果学生不能了解其中的规律,可能根本不知道如何着手数学运算,教师可引导学生用数形结合思想突破这一学习难关,提高学生的数学运算水平.
三、应用数形结合的思想,帮助学生拓展发散范围
高中数学问题具有综合性强的特点,有时学生应用一个角度不能有效解决数学问题时,将这个数学问题转换成另一个数学问题,切换解决数学问题的角度,可能就会找到答案.图形可以成为一个数学思路和另一个数学思路之间的桥梁,学生应用图形发散思维,能够激发解题的想象力.
科学研究证明,人们面对图形时,会有较强的发散思维能力.教师可引导学生在解决数学问题时应用数形结合的方法帮助发散思维,拓宽解决数学问题的切入点.
总之,教师可通过数学教学引导学生理解数形结合思想,不仅是一种解决数学问题的思想,更是一种理解科学问题的思想.如果学生能应用数形结合的方法突破学习数学知识的障碍,就能提高学习数学知识的效率,高中数学教师也就能提高数学教学效率.
一、应用数形结合的思想,帮助学生理解数学概念
概念教学是数学教学中的重要内容之一,部分教师在概念教学中常常给学生灌输抽象的概念,部分学生不能完全理解教师所说的数学概念,或者对数学概念的理解有岐义.如果学生不能正确理解数学概念,在应用数学概念知识时就会犯下错误.图形直观性强,数学教师可用数形结合的方法,帮助学生理解数学概念.
高中数学运算问题规律性很强,如果学生不能了解其中的规律,可能根本不知道如何着手数学运算,教师可引导学生用数形结合思想突破这一学习难关,提高学生的数学运算水平.
三、应用数形结合的思想,帮助学生拓展发散范围
高中数学问题具有综合性强的特点,有时学生应用一个角度不能有效解决数学问题时,将这个数学问题转换成另一个数学问题,切换解决数学问题的角度,可能就会找到答案.图形可以成为一个数学思路和另一个数学思路之间的桥梁,学生应用图形发散思维,能够激发解题的想象力.
科学研究证明,人们面对图形时,会有较强的发散思维能力.教师可引导学生在解决数学问题时应用数形结合的方法帮助发散思维,拓宽解决数学问题的切入点.
总之,教师可通过数学教学引导学生理解数形结合思想,不仅是一种解决数学问题的思想,更是一种理解科学问题的思想.如果学生能应用数形结合的方法突破学习数学知识的障碍,就能提高学习数学知识的效率,高中数学教师也就能提高数学教学效率.