石墨烯包覆天然球形石墨作为锂离子电池的负极材料,是否需要乙炔黑导电剂?

来源 :物理化学学报 | 被引量 : 0次 | 上传用户:hhl20020922
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我们通过包覆炭化的方法制备得到了石墨烯包覆的天然球形石墨(G/SG)材料,并使用扫描电子显微镜、X射线衍射仪以及多种电化学测试手段考察了不同石墨烯含量的复合材料的形貌结构及电化学性能.我们发现,在不添加乙炔黑(AB)的情况下,G/SG复合材料表现出较高的首次库伦效率,很好的循环稳定性和高倍率性能.当石墨烯包覆量为1%时,材料50次循环后的可逆容量可与添加10%AB的天然石墨电极(SG)等同;当石墨烯包覆量为2.5%时,材料的比容量完全高于添加10%AB的石墨电极.材料电化学性能的改善归因于石墨烯的包覆.一方面,石墨烯的柔软可变性可以保证天然石墨颗粒在充放电过程中的结构完整性,从而有效改善材料的循环稳定性;另一方面,石墨烯的存在提高了电极的导电性,促进更好导电网络的形成.因此,石墨烯包覆天然球形石墨材料中,石墨烯不仅是活性物质,也发挥导电剂的作用.当添加5%的乙炔黑时,在50 mA·g-1电流循环50次后,5%G/SG电极的可逆容量从381.1 mAh·g-1提高到404.5 mAh·g-1,在1A·g-1电流时可逆容量从82.5 mAh·g-1提高到101.9 mAh·g-1,这表明G/SG电极仍然需要乙炔黑导电剂.乙炔黑颗粒填充在复合材料的空隙中,通过点接触的形式连接到G/SG颗粒,与石墨烯协同作用形成了更加有效的导电网络.尽管石墨烯包覆和乙炔黑添加对天然石墨电极具有积极的影响,例如增加了天然石墨电极的导电性和储锂性能(包括可逆容量,倍率性能和循环性能),但随着石墨烯或乙炔黑的增加,电极密度通常会降低.因此,在实际应用中应考虑石墨负极材料的质量和体积容量的平衡.这些结果对天然石墨的进一步商业应用具有重要意义.我们的工作为天然石墨电极在锂电池中的电化学行为提供了一种新的认识,并且有助于制备更高性能的负极材料.“,”Graphene-wrapped natural spherical graphite (G/SG)composites were prepared using the encapsulation-carbonization approach.The morphology and structure of the composites were characterized by scanning electron microscopy and X-ray diffraction analysis.The electrochemical performance of the composites with different graphene contents as anode materials for lithium-ion batteries was investigated by various electrochemical techniques.In the absence of acetylene black (AB),the G/SG composites were found to exhibit high specific capacity with high first-cycle coulombic efficiency,good cycling stability,and high rate performance.Compared with the natural spherical graphite (SG) electrode,the G/SG composite electrode with 1% graphene exhibited higher reversible capacity after 50 cycles;this capacity performance was equal to that of the SG + 10%AB electrode.Moreover,when the addition of 2.5% graphene,the composite electrode exhibited higher initial charge capacity and reversible capacity during 50 cycles than the SG+10%AB electrode.The significant improvement of the electrochemical performance of the G/SG composite electrodes could be attributed to graphene wrapping.The graphene shell enhances the structural integrity of the natural SG particles during the lithiation and delithiation processes,further improving the cycling stability of the composites.Moreover,the bridging of adjacent SG particles allows the formation of a highly conductive network for electron transfer among SG particles.Graphene in the composites serves as not only an active material but also a conductive agent and promotes the improvement of electrochemical performance.When 5%AB was added,the reversible capacity of the 5%G/SG electrodes significantly increased from 381.1 to 404.5 mAh·g-1 after 50 cycles at a rate of 50 mA·g-1 and from 82.5 to 101.9 mAh·g-1 at 1 A·g-1,suggesting that AB addition improves the performance of the G/SG composite electrodes.AB particles connect to G/SG particles through point contact type and fill the gaps between G/SG.A more effective conductive network is synergistically formed via graphene-AB connection.Although graphene wrapping and AB addition improve the performance of natural graphite electrodes,such as through increase in electrical conductivity and enhancement of Li-storage performance,including improvement of reversible capacity,rate performance,and cycling stability,electrode density typically decreases with graphene or AB addition,which should consider the balance between the gravimetric and volumetric capacities of graphite anode materials in practical applications.These results have great significance for expanding the commercial application scope of natural graphite.Our work provides new understanding and insight into the electrochemical behavior of natural SG electrodes in lithium-ion batteries and is helpful for the fabrication of high-performance anode materials.
其他文献
石墨烯薄膜是一种以石墨烯纳米片为基元结构的宏观体,通过合理的结构设计和表面修饰使其具有优异的电学、力学和热学性能,将在电化学储能、电子器件、健康和环保等领域具有潜在的应用.本文主要综述了从石墨烯基元调控到二维宏观膜组装以及石墨烯薄膜在超级电容器应用中的研究进展.主要介绍了石墨烯薄膜的简易制备方法,并详细介绍了通过对石墨烯基元的结构调控和表面修饰来优化石墨烯薄膜电化学性能的两大策略,最后对石墨烯薄膜应用所面临的挑战和未来的发展进行了总结与展望.
针对共源二倍频器匹配电路版图面积较大和传统共基二倍频器变频增益低的问题,本文提出一种二次谐波短路的共基二倍频器电路.共基结构和共源结构相比输出电容较小使得匹配电路尺寸较小,同时在输入端引入二次谐波短路电路,有效提升了共基二倍频器的变频增益.该二倍频器由Push-push二倍频器电路和驱动放大器构成,其中前者用来产生二倍频信号,后者用来对二倍频信号进行放大输出以便驱动二倍频器的后一级电路.基于对晶体管偏置与二次谐波输出功率关系的研究,将晶体管偏置在AB类提升了输出功率和变频增益.输入端共模点接地减小了输入匹
冷原子体系的量子波动性、宏观量子相干性和人工可调控性,使其成为了一个全新的量子体系,其新颖的量子态和奇异物性的研究是国际上具有前瞻性和挑战性的前沿领域.自1995年实现稀薄气体玻色一爱因斯坦凝聚以来,从单组分、简单相互作用的研究逐渐过渡到多组分、复杂多体效应以及自旋一轨道耦合、非厄米、强关联、无序效应等新物理的研究.文章介绍了近几年冷原子方面的研究进展,包括冷原子的相关技术,冷原子在量子精密测量、量子模拟和量子计算方面的重要工作,期望给未来的研究以新启迪.
石墨烯纤维是一种由石墨烯片层紧密有序排列而成的一维宏观组装材料.通过合理的结构设计和可控制备,石墨烯纤维能够将石墨烯在微观尺度的优异性能有效传递至宏观尺度,展现出优异的力学、电学、热学等性能,从而应用于功能织物、传感、能源等领域.目前,石墨烯纤维主要通过湿法纺丝、限域水热组装等方法制备得到,其性能可以通过对材料体系和制备工艺的优化而进一步提升.本文首先介绍了石墨烯纤维的制备方法,然后详细阐述了石墨烯纤维的性能,讨论了其性能提升策略,并总结了石墨烯纤维的应用,最后对石墨烯纤维的未来发展、挑战和前景进行了展望
石墨烯纤维材料是以石墨烯为主要结构基元沿某一特定方向组装而成或由石墨烯包覆纤维状基元形成的宏观一维材料.根据组成基元的不同可将石墨烯纤维材料分为石墨烯纤维和石墨烯包覆复合纤维.石墨烯纤维材料在一维方向上充分发挥了石墨烯高强度、高导电、高导热等特点,在智能纤维与织物、柔性储能器件、便携式电子器件等领域具有广阔的应用前景.随着化学气相沉积(Chemical Vapor Deposition,CVD)制备石墨烯薄膜技术的发展,CVD技术也逐渐应用于石墨烯纤维材料的制备.利用CVD法制备石墨烯纤维可避免传统纺丝工
钾在石墨中嵌入电位较低,因此石墨负极可使钾离子电池具有较高的能量密度,是一种理想的钾离子电池负极材料.然而,石墨嵌钾后的体积膨胀率高达60%,导致钾离子电池的循环稳定性较差.此外,钾嵌入石墨层间的动力学过程缓慢,制约了钾离子电池倍率性能的提升.在本工作中,我们用还原氧化石墨烯(rGO)包覆剥离石墨(EG),得到一种具有协同效应的层状复合材料.一方面,以少层的EG代替石墨可以减少由于钾的嵌入/脱嵌所引起的体积膨胀和内部应力;另一方面,外层rGO可以避免EG的堆叠,这有利于加速动力学过程并在钾化/去钾化过程中
利用电催化技术将CO2转化为小分子燃料或高值化学品是实现原子经济、构建人工碳循环的绿色能源技术之一.电催化还原CO2 (ECR)的反应条件温和、产物多样(C1、C2和C2+),有极大的发展潜力.然而,ECR技术面临一些需要解决的挑战性问题,包括电极过电势高、C2及C2+产物选择性低、伴随析氢反应等.解决这些问题的关键在于创制低成本、高性能电催化剂.近年来,石墨烯基电催化剂的研究成为ECR领域的热点之一,原因包括:1)在电化学环境中稳定性好;2)表面原子、电子结构可调,进而实现材料催化活性的调控;3)维度可
用光镊形成光阱囚禁单个原子、用激光将单个原子冷却到基态形成超冷原子、将超冷原子相干合成单个超冷分子、将单原子分子重排串成丰富多样的超冷单原子分子阵列,这就构成了精密相干可控的多粒子量子系统,为多种前沿科学研究与技术发展提供难得的量子平台.文章介绍近年来在单原子量子态高保真操控、异核原子量子纠缠、原子一分子耦合态相干控制、单个超冷分子的相干合成、异核原子阵列确定性制备等方面所取得的最新研究结果;对未来在多体物理、超冷化学、精密测量、量子模拟、量子计算等方面的发展前景进行了展望.
基于冷原子气体的时频测量在近20年里快速发展,引起了人们的广泛关注,其典型代表是基于大量中性原子的光晶格原子钟.利用超稳钟激光同时探测囚禁在光晶格里成千上万个冷原子的钟跃迁信号,光品格原子钟已实现10-18量级的频率准确度和10-17量级的秒级稳定度,大幅度提高了时频测量的精度.文章概述了光品格原子钟的发展历史、工作原理、性能评估及应用前景.
国家自然科学基金委员会(简称基金委)数理科学部物理科学二处(简称物理Ⅱ)主要资助基础物理、粒子物理、核物理、加速器反应堆与探测器、等离子体物理、核技术及其应用等领域的研究工作,同时负责受理国家自然科学基金委员会—中国工程物理研究院联合基金(简称NSAF联合基金)、理论物理专款等特殊类型的项目,还有核技术创新联合基金中涉及物理Ⅱ领域的项目.文章简要综述2021年度物理Ⅱ基金项目受理、评审和资助情况以及2022年度申请注意事项.
期刊