论文部分内容阅读
针对传统优化算法在求解高维多模态优化问题时存在收敛速度慢、求解精度低的问题,提出一种基于正交设计与小生境精英策略的自适应差分进化算法ONDE。首先利用正交表产生初始种群,然后采用小生境精英策略来产生小生境种群(NP),并用小生境种群更新精英个体;接着应用拥挤裁剪避免种群陷入局部搜索,最后利用自适应差分变异算子改进了差分进化(DE)算法。通过对7个benchmark函数仿真验证,实验结果表明,算法在收敛速度、求解精度和稳定性方面都有较大优势。