论文部分内容阅读
针对现代工业过程的不断复杂化和其中非线性、不确定性因素的增加,给出了一种基于粗糙集的模糊神经网络控制器的设计方法,该方法将粗糙集理论与模糊神经网络结合起来,利用粗糙集从观测的输入输出数据中提取规则,并寻求最小规则集,解决了模糊神经网络“规则爆炸”问题。通过在MATLAB平台上进行仿真,结果表明该方法具有良好的控制能力,对于突加干扰具有良好自适应能力。