论文部分内容阅读
匿名模型是近年来隐私保护研究的热点技术之一,主要研究如何在数据发布中既能避免敏感数据泄露,又能保证数据发布的高效用性。提出了一种(a[s],k)-匿名有损分解模型,该模型通过将敏感属性泛化成泛化树,根据数据发布中隐私保护的具体要求,给各结点设置不同的个性化α约束;基于数据库有损分解思想,将数据分解成敏感信息袁和非敏感信息表,利用有损连接生成的冗余信息实现隐私保护。实验结果表明,该模型很好的个性化保护了数据隐私。