论文部分内容阅读
由于手写哈萨克字符结构的特殊性,仅提取几种单一的字符特征进行识别时正确率较低,识别效果较差。由此采用改进的PCA方法定位单词基线位置,对每个字符提取包括笔画密度特征、投影特征、轮廓特征等在内的36种特征,使用K-W检验对各特征的分类能力进行比较,并采用线性判别函数进行分类,取得了较高的识别精度。实验结果表明,该系统针对脱机字符识别率达到94%以上。