论文部分内容阅读
以大规模网络维吾尔文文本的自动分类技术研究为背景,设计模块化结构的维吾尔文本分类系统,在深入调研基础上选择NaiveBayes算法为分类引擎,用.C#实现分类系统。预处理中,结合维吾尔语的词法特征,通过引入词干提取方法大大降低特征维数。在包含10大类共计3000多个较大规模文本语料库基础上给出分类实验结果,再通过x2统计方法选择不同数目的特征,也分别给出分类实验结果。结果表明,预处理后的维吾尔文特征空间中只有1%-3%特征是最佳的,因而进一步确定哪些是最佳特征或降低特征空间维数是有可能的。