论文部分内容阅读
Objective To investigate the regulation of leptin on insulin secretion and expression of ATP-sensitive potassium channel subunit sulfonulurea receptor 1 (SUR1) mRNA, and to determine whether the effects of leptin are mediated through known intracellular signaling transduction.Methods Pancreatic islets were isolated by the collagenase method from male SD rats. The purified islets were incubated with different concentrations of leptin for 2 h in the presence of different concentrations of glucose. Insulin release was measured using radioimmunoassay. Expression of SUR1 mRNA was detected by RT-PCR.Results In the presence of leptin 2 nmol/L, insulin release was significantly inhibited at either 11.1 or 16.7 mmol/L glucose concentration (both P<0.05), but insulin release was not altered at glucose of 5. 6 mmol/L physiological concentration. The dose-response experiment showed that the maximal effect of leptin on insulin secretion achieved at 2 nmol/L. Exposure of islets to 2 nmol/L leptin induced a significan
Objective To investigate the regulation of leptin on insulin secretion and expression of ATP-sensitive potassium channel subunit sulfonulurea receptor 1 (SUR1) mRNA, and to determine whether the effects of leptin are mediated through known intracellular signaling transduction. Methods Pancreatic islets were isolated by the The purified islets were incubated with different concentrations of leptin for 2 h in the presence of different concentrations of glucose. Insulin release was measured using radioimmunoassay. Expression of SUR1 mRNA was detected by RT-PCR. Results In the the presence of leptin 2 nmol / L, insulin release was significantly inhibited at either 11.1 or 16.7 mmol / L glucose concentration (both P <0.05), but insulin release was not altered at glucose of 5. 6 mmol / L physiological concentration. -response experiment showed that the maximal effect of leptin on insulin secretion achieved at 2 nmol / L. Exposure of islets to 2 nmol / L leptin in duced a significan