循环荷载下互层岩样力学声学特征试验

来源 :西安科技大学学报 | 被引量 : 0次 | 上传用户:tmhou5648
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为研究循环加卸载条件下互层岩样的力学特性和破坏前兆信息,利用电液伺服压力机试验系统和SAEU2S多通道声发射信号采集系统对天然互层标准试样进行了单轴压缩和单轴分级循环加卸载试验,对比分析了自然和饱水状态下互层岩样的强度、变形特征、破坏模式及声发射特性.结果 表明:较单轴加载,循环加卸载会导致自然状态试样强度降低;在同一加载条件下,饱水均会对互层岩样的强度造成劣化,在循环加卸载和水的耦合作用下,互层试样强度劣化率达60.19%;自然与饱水试样的加卸载平均变形模量分别为6.571,7.927,3.646,4.858 GPa,表明水的存在会降低试样刚度;单轴压缩载荷下试样主要表现为贯通劈裂剪切型破坏,循环载荷下试样表现为拉-剪混合破坏.基于声发射参数表征的试样损伤曲线在“卸载-再加载”时出现短暂的“台阶”平静期现象,研究发现互层试样失稳破坏前最后一次出现“台阶”平静期时所对应的损伤约为70%,该值可作为预测互层岩石失稳破坏的前兆预警,可为工程岩体灾害预警提供理论参考.
其他文献
锂硫电池的循环放电稳定性较低,因此我们采用一种低成本的方法改善锂硫电池的性能,即在硫电极表面制备乙炔黑涂层并测试了材料的形貌结构及电化学性能.结果表明,在硫含量(质量分数)70%的硫-乙炔黑复合材料中,硫附着在乙炔黑颗粒表面.接着在硫电极表面制备了厚度15μm左右的乙炔黑涂层,乙炔黑涂层-硫电极的氧化反应电位低于硫电极,说明乙炔黑涂层有助于硫电极氧化反应的进行.与硫电极相比,乙炔黑涂层-硫电极活性物质的聚集程度低于硫电极,乙炔黑涂层-硫电极具有更高的放电比容量和循环放电稳定性.在150次循环充放电后,乙炔
采用碳布(CC)为柔性基底,通过水热法制备了MnO2/CC及N掺杂MnO2/CC无黏结剂负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积测试和恒电流充放电对材料进行了结构表征及电化学性能测试.结果表明N掺杂MnO2/CC具有良好的倍率性能和循环稳定性.在0.1 A·g-1的电流密度下,其首次充电比容量为948.8 mAh·g-1,经过不同倍率测试后电流密度恢复至0.1 A·g-1时仍然保持有907.9 mAh·g-1的可逆比容量,容量保持率为95.7%.在1 A
针对城市路况下可能发生的汽车碰撞事故,考虑车辆的横向运动特性,提出一种基于模型预测控制(MPC)的主动避撞分层控制策略,其中,上层模块采用Sigmoid函数进行避撞路径规划,下层模块接收上层所选择的最优路径并进行轨迹跟踪控制.然后建立了基于CarSim的整车动力学模型和基于Matlab/Simulink的控制模块,并进行了联合仿真实验.结果表明,所提出的主动避撞策略可以克服单一制动避撞的局限性,且控制器具有较好的稳定性和鲁棒性,能够有效规划出转向避撞路径并控制车辆进行实时轨迹跟踪,实现了在紧急情况下对前方
通过共沉淀法合成了双金属氧化物MnWO4镶嵌生物质衍生碳(MnWO4/BC)纳米复合催化剂,并将其作为对电极(counter electrode,CE)催化剂组装了染料敏化太阳能电池(dye-sensitized solar cell,DSSC),探究了MnWO4/BC在非碘体系中的催化性能和光伏性能.结果表明:在铜氧化还原(Cu2+/Cu+)电对DSSC中获得的光电能量转换效率(power conversion efficiency,PCE)为3.57%(D35)和1.59%(Y123),高于Pt电极的
利用g-C3N4纳米片表面的氨基与膜基底材料氯甲基化聚醚砜(CMPES)的苄氯基团发生化学交联反应,再通过相转化法制备出g-C3N4/CMPES复合膜.系统研究了g-C3N4纳米片的添加对复合膜的结构、形貌及过滤、光催化、抗污染性能的影响,并探讨其光催化降解牛血清白蛋白溶液(BSA)的机理.研究结果表明:g-C3N4纳米片与膜基底材料通过化学键相连接,有效提高了复合膜的光催化性能和稳定性.由于g-C3N4纳米片的亲水性和光催化作用,使复合膜表现出优异的过滤性能和抗污染性能.
为实现次氯酸根的实时、快速、便捷检测,我们以2,7-二溴-9-芴酮为原料,通过两步常规反应,合成了一种新型的turn-on型ClO-荧光探针.在磷酸缓冲盐溶液(PBS)中,随着ClO-浓度的增大,探针在511 nm的发射峰逐渐增大,呈绿色荧光发射.探针与ClO-反应迅速,10 s内反应完成.此外,该探针对ClO-有较低的检出限,检出限为0.74μmol·L-1.细胞实验表明探针可以在细胞水平检测内源性和外源性的ClO-.
采用单宁酸对铜金属有机骨架材料蚀刻的策略,制备得到一种疏松多孔的CuO(记为E-CuO),并将E-CuO修饰在玻碳电极上(E-CuO/GCE)用于葡萄糖的电化学传感研究.结果表明:在0.25~2000μmol·L-1葡萄糖浓度范围内,E-CuO/GCE具有0.273μA·μL·mol-1·cm-2的较高灵敏度及良好的抗干扰性能、重现性和稳定性.在实际样品分析中,E-CuO/GCE在蜂蜜和水果糖的加标回收率实验中表现良好,可用于葡萄糖注射液中葡萄糖的直接测定.“,”Based on an etching s
采用氯化亚铁、2,6-二甲酰基-4-甲基苯酚二肟(H3DFMP)和四(4-硼酸基苯基)甲烷(TBPM),通过一步配位作用和硼酸酯化脱水聚合反应,合成了一例含金属的三维多孔有机聚合物(Fe2-POP).Fe2-POP是以双核亚铁配位H3DFMP的直线单元与TBPM的四面体单元连接而成的具有三维金刚石结构的多孔有机聚合物.对模型化合物的X射线单晶衍射分析验证了双核亚铁配合物单元的结构特征.红外光谱和固体核磁表征证明了Fe2-POP中C=N和B—O键的形成.Fe2-POP具有较高的比表面积(510 m2·g-1
由于煤中极性物质的不均匀性,煤体吸收微波能产生差异,从而导致煤体温度分布不均匀,同时水分蒸发形成的蒸气压力作用于煤体内部,导致煤体孔隙结构发生变化.微波注热具有强化煤层气开采的潜力,为了研究微波辐射下煤体孔裂隙结构演化特征,文中设计了煤的循环微波辐射实验.采用高清相机记录煤体表面裂隙结构特征,结合核磁共振分析循环微波辐射下煤体内部的孔隙结构,利用声波分析煤体内部裂隙演化特征.结果 表明:微波辐射可促进煤体孔隙结构扩展,导致微小孔隙相互连通、发育,宏观上表现为裂隙的进一步延伸和贯通,形成新的裂隙网络.随着微