论文部分内容阅读
Pendulum-type ( μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse waves propagated in continuum media and is also a phenomenon of the sign-variable reaction of deep block rock masses to dynamic actions, besides the Anomalous Low Friction (ALF) phenomenon. In order to confirm the existence of the μ wave and study the rule of variation of this μ wave experimentally and theoretically, we first carried out one-dimensional low-speed impact experiments on granite and cement mortar blocks and continuum block models with different characteristic dimensions, based on the multipurpose testing system developed by us independently. The effects of model material and dimensions of models on the propagation properties of 1D stress wave in blocks medium are discussed. Based on a comparison and analysis of the propagation properties (acceleration amplitudes and Fourier spectra) of stress wave in these models, we conclude that the fractures in rock mass have considerable effect on the attenuation of the stress wave and retardarce of high frequency waves. We compared our model test data with the data of in-situ measurements from deep mines in Russia and their conclusions. The low-frequency waves occurring in blocks models were validated as Pendulum-type wave. The frequencies corresponding to local maxima of spectral density curves of three-directional acceleration satisfied several canonical sequences with the multiple of 2~(1/2), most of those frequencies satisfied the quantitative expression (2~(1/2))i V p/2△ .
Pendulum-type (μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse waves propagated in continuum media and is also a a of the sign-variable reaction of deep block rock masses to dynamic actions, besides the Anomalous Low Friction (ALF) phenomenon. In order to confirm the existence of the μ wave and study the rule of variation of this μ wave experimentally and theoretically, we first carried out one-dimensional low-speed impact experiments on granite and cement mortar blocks and continuum block models with different characteristic dimensions, based on the multipurpose testing system developed by us independently. The effects of model material and dimensions of models on the propagation properties of 1D stress wave in blocks medium are discussed. Based on a comparison and analysis of the propagation properties (acceleration amplit udes and Fourier spectra) of stress waves in these models, we conclude that the fractures in rock mass have considerable effect on the attenuation of the stress wave and retardar of high frequency waves. We compared our model test data with the data of in-situ The measurements from deep mines in Russia and their conclusions. The low-frequency waves occurring in blocks models were validated as Pendulum-type waves. The frequencies corresponding to local maxima of spectral density curves of three-directional acceleration Several several canonical sequences with the multiple of 2 ~ (1/2), most of those frequencies satisfied the quantitative expression (2 ~ (1/2)) i V p / 2 △.