论文部分内容阅读
针对原始K-means聚类算法受初始聚类中心影响过大以及容易陷入局部最优的不足,提出一种基于改进布谷鸟搜索(CS)的K-means聚类算法(ACS-K-means)。其中,自适应CS(ACS)算法在标准CS算法的基础上引入步长自适应调整,以提高搜索精度和收敛速度。在UCI标准数据集上,ACS-K-means算法可得到比K-means、基于遗传算法的K-means(GA-K-means)、基于布谷鸟搜索的K-means(CS-K-means)和基于粒子群优化的K-means(PSO-K-means)算法更优