论文部分内容阅读
核函数的衰减系数是影响核函数方法分类性能的重要因素。分析了信号分析理论中关于采样信号的不失真重建问题与Parzen窗函数方法的关系,讨论了核函数残留边带信息量与指定采样频率条件下特征变量的自信息量之间的关系。推导了Laplace核函数在均匀采样条件下的衰减系数的计算公式,分析并给出了非均匀采样情况下衰减系数计算和处理方法。实验结果表明,与传统的基于Gauss核函数的Parzen窗函数法、经典的KNN方法、BP神经网络以及SVM方法相比,提出的Laplace核函数参数设置方法具有较高的总体分类性能。