论文部分内容阅读
Because of its synthetic and complex characteristics, the combustion process of the shaft ore-roasting furnace is very difficult to control stably. A hybrid intelligent control approach is developed which consists of two systems: one is a cascade fuzzy control system with a temperature soft-sensor, and the other is a ratio control system for air flow with a compensation model for heating gas flow and air-fuel ratio. This approach combined intelligent control, soft-sensing and fault diagnosis with conventional control. It can adjust both the heating gas flow and the air-fuel ratio in real time. By this way, the difficulty of online measurement of the furnace temperature is solved, the fault ratios during combustion process is decreased, the steady control of the furnace temperature is achieved, and the gas consumption is reduced. The successful application in shaft furnaces of a mineral processing plant in China indicates its effectiveness.
Because of its synthetic and complex characteristics, the combustion process of the shaft ore-roasting furnace is very difficult to control stably. A hybrid intelligent control approach is developed which consists of two systems: one is a cascade fuzzy control system with a temperature soft- sensor, and the other is a ratio control system for air flow with a compensation model for heating gas flow and air-fuel ratio. This approach combined intelligent control, soft-sensing and fault diagnosis with conventional control. flow and the air-fuel ratio in real time. By this way, the difficulty of online measurement of the furnace temperature is solved, the fault ratios during combustion process is decreased, the steady control of the furnace temperature is achieved, and the gas consumption is reduced. The successful application in shaft furnaces of a mineral processing plant in China indicates its effectiveness.