论文部分内容阅读
Cells adhesion is very important for many physiological processes. Using advanced Raman microspectroscopic technique, we selected T Leukemia cells (Jurkat) as the materials and obtained simultaneously conformation information of various biomolecules inside the whole living cells. By comparing the Raman microspectroscopic spectra of single and adhesive cancer cells, we found for the first time that when cells adhered, the conformation of the biomolecules (DNA, protein, carbohydrates and lipids) inside the cells had different changes: (i) the backbone of double-stranded DNA maintained orderly B-form or modified B-form conformation, whereas the groups of its deoxyribose and bases were modified; (ii) the conformational changes of the main chain and the side chain in the protein were obviously variant. The lines intensity belonging to α-helix andβ-sheet decreased, while that ofβ-turn increased. Tyrosine and tryptophane residues of the protein changed from "buried state" to "exposed state"; the lines intensity of its sulfhydryl group also increased; the conformation of its disulfide bond changed from two kinds to three kinds. These facts suggest that the cells adhesion causes changes in H-bonds organization of the main chain and environment of the side chain in the protein; (iii) the groups of the carbohydrates were also modified simultaneously; (iv) the conformation of the lipids bilayers of the membranes changed obviously; the order parameter for lateral interaction between chains decreased gradually with the increase of number of the adhesive cells. So cells adhesion resulted in an increase in fluidity of the membrane and ion permeability on the membrane.