论文部分内容阅读
考虑到2个或多个数据集的显露序列对学习/知识迁移有用,提出一种特殊的显露序列模式,即共享显露序列模式(SESs),并给出一个基于共享广义后缀树的框架来挖掘共享显露序列模式,同时在挖掘SESs的过程中应用2种新的剪枝策略。从3个方面进行实验评估:SESs挖掘算法的性能分析,SESs的负迁移分析,以及SESs用于提高协同分类准确性分析。研究结果表明:新提出的SESs在时间性能、负迁移影响、提高协同分类准确性上均取得较好的性能。