论文部分内容阅读
采用近红外光谱(NIRS)分析技术和化学计量方法建立了粳稻储藏品尝评分值的近红外分析模型,并对模型进行了预测准确性评价;在建立定标模型的过程中,探讨了不同光谱散射、数学等优化处理对定标模型的影响。结果表明:修正偏最小二乘法(MPLS)是建立粳稻储藏品尝评分值定标模型的最佳回归方法,所建立颗粒状和粉末状样品模型的定标相关系数(RSQ)分别为0.9274和0.9230,定标标准偏差(SEC)分别为2.3479和2.5391。定标模型具有较好的预测准确性。