论文部分内容阅读
在信息高速发展的当代社会,5G技术的问世将极大地助力社会经济和信息化发展,而隐私安全和信息安全愈发得到重视,因此公众会对身份的识别技术提出了更高要求。然而,传统基于密码、ID卡以及新型的基于人脸和指纹的识别方法存在易丢失、遗忘和窃取或易于伪造和获取复制等问题而存在极大的安全隐患。为提高身份识别的可靠性和准确率,提出了基于希尔伯特振动分解和卷积神经网络的融合特征心电图信号识别算法。首先采用基于重叠组收缩阈值算法和平移不变的消噪算法对含噪心电信号去噪,其次利用盲源分割技术将心电信号分割成固定时长的心电片段,再