Application of Particle Swarm Optimization to Fault Condition Recognition Based on Kernel Principal

来源 :International Journal of Plant Engineering and Management | 被引量 : 0次 | 上传用户:cnwan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Particle swarm optimization(PSO) is an optimization algorithm based on the swarm intelligent principle.In this paper the modified PSO is applied to a kernel principal component analysis(KPCA) for an optimal kernel function parameter.We first comprehensively considered within-class scatter and between-class scatter of the sample features.Then,the fitness function of an optimized kernel function parameter is constructed,and the particle swarm optimization algorithm with adaptive acceleration(CPSO) is applied to optimizing it.It is used for gearbox condition recognition,and the result is compared with the recognized results based on principal component analysis(PCA).The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter,and its results of fault recognition outperform those of PCA.We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanical failure,and is helpful for fault condition recognition of complicated machines. Particle swarm optimization (PSO) is an optimization algorithm based on the swarm intelligent principle. In this paper the modified PSO is applied to a kernel principal component analysis (KPCA) for an optimal kernel function parameter. We first comprehensively considered within-class scatter and between-class scatter of the sample features. Here, the fitness function of an optimized kernel function parameter is constructed, and the particle swarm optimization algorithm with adaptive acceleration (CPSO) is applied to optimizing it. It is used for gearbox condition recognition, and the result is compared with the recognized results based on principal component analysis (PCA). The results show that KPCA optimized by CPSO can effectively recognize fault conditions of the gearbox by reducing bind set-up of the kernel function parameter, and its results of fault recognition outperform those of PCA.We draw the conclusion that KPCA based on CPSO has an advantage in nonlinear feature extraction of mechanic al failure, and is helpful for fault condition recognition of complicated machines.
其他文献
以江泽民同志为核心的党中央,始终不懈地把反腐倡廉当作关系党和国家命运与前途的大事来抓,大得党心民心。古人曰:“廉者政之本也,民之表也;贪者政之祸也,民之贼也。”“公生
他在维修岗位上工作了27载,作为一名共产党员,他工作兢兢业业直到生命的最后一刻,在平凡之中彰显无私,在普通之处乐于奉献,表现了一名共产党员的忘我情怀与高尚的精神境界…
目的:   1、修订儿童躯体化量表,并检验其信度和效度。   2、探讨儿童躯体化量表中文版的临床应用价值。   3、了解不同性别、民族、地域变动、年龄、家庭类型的儿童
有关部门联合发布“关于清理含不良内容广告的通知”中宣部、国家工商行政管理总局、国家广播电影电视总局、新闻出版总署近日联合发布《关于清理含有不良内容广告的通知》要
目的:   研究在蟾蜍灵(bufalin)抑制急性淋巴白血病Jurkat细胞增殖及诱导细胞凋亡过程中丝裂原活化蛋白激酶(MAPK)信号通路的影响,以初步探讨MAPK在蟾蜍灵治疗急性淋巴细胞
目的:本文主要通过免疫组化检测Annexin-A1和Annexin-A2在外阴硬化性苔藓及外阴癌上的表达情况,并探讨其表达的意义。  方法:1、采用免疫组化方法检测Annexin-A1和Annexin-A
黑色星期五声明/本报昨日《数千万元公款输得精光》一文,因没有事实依据,导致报道严重失实,其他媒体不得转载,并向读者致歉。/本报编辑部《长沙晚报》2月13日声明/本报昨日A
三山吐秀迎宾客,四海贤达聚榕城。2012年1月15日至16日,由福州市闽都文化研究会主办的“首届闽都文化与中国现代化论坛”在闽越古都——福州隆重召开。
美国研究人员最近发现,在完成一项任务时,蚂蚁比会使用工具的双足动物——人类表现得更加理性,这是因为蚁群的集体智慧可以避免整个群体出现决策失误。这一发现为推动智能机
目的:  我们经过查阅文献得知HCRP1和DLL4蛋白与两个通路密切相关,但与胃癌侵袭和转移等生物学行为的关系尚不明确。本论文拟研究这两个关键蛋白对胃癌细胞多种生物学特性的