论文部分内容阅读
针对单一或单域特征难以全面反映设备零部件运行状态的问题,提出了一种基于混合域特征集与粒子群优化支持向量机(Particle Swarm Optimization Support Vector Machine,PSO-SVM)的滚动轴承早期故障诊断方法。首先,分别采用基于时域、频域以及时频域的信号处理方法进行特征提取;然后将提取到的特征指标进行有机结合,构建混合域特征集;最后将混合域特征集输入粒子群优化支持向量机中实现滚动轴承早期故障的诊断。通过对凯斯西储大学轴承故障诊断实验数据进行验证,结果表明该方法在轴