论文部分内容阅读
景深视频因高清、美观广受大众喜爱。然而,要从海量视频中检出此类视频十分困难。已有较多研究基于景深图像成像原理,开展景深像素分割算法研究,但难以直接应用于实际视频分类场景。本文针对景深视频类型,设计了可预测视频类型的深度网络。根据景深成像原理,各语义物体之间相对相机的景深深度存在一定的逻辑关系。为此提出以图像深度为指导,利用深度预测模块预测图像的景深深度信息,将其合并后输入至分类网络进行训练检测,以降低景深视频误检率,提升网络模型的性能。此外,针对现实需求中该领域有标数据较少,而不同数据集分布会降低性