论文部分内容阅读
The November 14, 2001 Ms8.1 Kunlun Mountains earthquake in northern Tibet is the largest earthquake occurring on the Chinese mainland since 1950. We apply a three-dimensional (3-D) finite element numerical procedure to model the coseismic displacement and stress fields of the earthquake based on field investigations. We then further investigate the stress interaction between the Ms8.1 earthquake and the intensive aftershocks. Our primary calculation shows that the coseismic displacement field is centralized around the east Kunlun fault zone. And the attenuation of coseismic displacements on the south side of Kunlun fault zone is larger than that on the north side. The calculated coseismic stress field also indicates that the calculated maximal shear stress field is centralized around the east Kunlun fault zone; the directions of the coseismic major principal stress are opposite to that of the background crustal stress field of the Qinghai-Xizang (Tibet) Plateau. It indicates that the earthquake relaxes the crustal stress state in the Qinghai-Xizang (Tibet) Plateau. Finally, we study the stress interaction between Ms8.1 earthquake and its intensive aftershocks. The calculated Coulomb stress changes of the Ms8.1 great earthquake are in favor of triggering 4 aftershocks.