论文部分内容阅读
在林寿与我最近合作的一篇文章中指出了∑^*-空间的构成定理需重新考虑.本文就是要证明在空间X的每个点是Gδ^-集的条件下该构成定理是成立的,所得的结论是:X是T1且每个点是Gδ^-集的∑^+-空间,如果f:X→Y是闭的满连续映射,则在Y中有-σ-闭离散子空间Z,使得对每个y∈Y\Z,f^-1(y)是X的ω1^-紧子空间.为得到该主要结果,本文证明了若空间X是每个点是Gδ^-集的次亚紧空间.则X中的每个闭离散子集是X中的Gδ^-集.