【摘 要】
:
目的建立儿童阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea-hypopnea syndrome,OSAHS)上气道气流场数值模型,并应用其评价分析阻塞因素及平面。方法根据9例OSAHS患
【机 构】
:
大连医科大学附属第二医院耳鼻咽喉头颈外科
【基金项目】
:
国家自然科学基金委员会资助项目(项目名称:OSAHS人上气道阻塞平面识别的生物力学模型研究,项目编号:10672036)
论文部分内容阅读
目的建立儿童阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea-hypopnea syndrome,OSAHS)上气道气流场数值模型,并应用其评价分析阻塞因素及平面。方法根据9例OSAHS患儿的上气道CT影像,对病态和模拟腺样体切除术后病例通过表面重建的方法进行三维重建,然后用有限元法对术前术后上气道气流进行数值模拟,分析气流流场特征。结果病态模型中,鼻咽部气流形态主要以湍流为主,术后模型中,以层流为主,上气道压强均降低。病态模型的鼻咽部、鼻阈和中鼻道是鼻腔气流高流速区,术后模
其他文献
以我国实施管理层收购(MBO)的上市公司为研究样本,采用改进的基本JONES模型来计量盈余管理程度,研究管理层收购(MBO)这一事件是否引发了我国上市公司显著的盈余管理行为。实
我国汽车工业经过半个世纪的发展,从无到有,取得了令世界瞩目的成就,但随之而来的环境污染与能源问题也越来越多。针对诸多环境与能源问题,电动汽车在国家政策的支持下蓬勃发
高等职业教育的发展要有适合学校自身实际和发展需要的科学定位,要有符合教育规律的理念,要建立有利于高职院校特色形成的体制和机制。推行工学结合和半工半读制度是我国高等
<正> 设Q={(x,y)|—π≤x,y≤π}。L(Q)表示在Q上可和且对于每个变元都以2π为周期的函数的全体。设λ(x,y)是支集(函数取值不为零的点的集合的闭包)有界的二元连续函数。由λ(x,y)产生
<正> 在[2],[3]中证明了当值格 L 有限时,紧致性定理成立.当值格 L 无限时紧性定理是否成立呢?说的更明确一点就是:设 T 是一个理论(分组句子集)且 T 的每一有限子集有模型(T 是
<正> 马尔可夫过程论的一个基本问题是:给定Q-矩阵Q,何时存在相应的Q-过程?若存在时何时唯一? Q全稳定时,P(t)的存在性由W.Feller(1940)和J.Doob(1945)解决。全稳定保守Q-过
<正> 一、问题的提法假设 D+是由一组简单、封闭、曲线 L0。L1,……,Lm 所围成的平面有界多连通区域,其中 L0包含所有其它的 Lj(j=1,……,m)在其内部。记 L=()Lj,用 D-表示D+UL
在动物卵母细胞体外成熟及胚胎体外培养体系中添加一定浓度的发情牛血清可能提高卵母细胞的成熟率及胚胎的发育率。本研究以屠宰场卵巢来源的绵羊卵母细胞为试验材料,探讨了
目的探讨胃肠道间质瘤(GIST)螺旋CT表现与分子生物学特征之间的关系。方法对54例GIST患者行螺旋CT平扫及三期动态增强扫描。采用免疫组化SP法分别对54例GIST组织中MMP-9及Hpa蛋
施马伦贝格病毒病(Schmallenberg virus,SBV)是一种新发现的动物传染病,因于2011年底在德国施马伦贝格镇首次发现而临时得名,随后蔓延于西欧(包括比利时、法国、德国、荷兰、意