论文部分内容阅读
本文导出在对流运动介质中多组分液滴汽化的通量公式,并给出描述液滴汽化历史的微分方程组.同时作了各种多组分液滴汽化历史的计算,计算结果与实验结果较好地吻合. 一、通量积分式和有效扩散系数 研究一个多组分理想溶液液滴在隋性气体(液滴溶液不吸收也不释放的气体),I中的汽化.设溶液由n种组分构成,则在液滴表面形成n+1种组分的多元气体混合物轴对称扩散膜层,第n+1种组分指的是隋性气体I.用假想膜层理论将轴对称扩散膜层折合为等效的球对称假想膜层,则可按stewart通量公式写出在该膜层中任意半径r处的稳态扩散方程,即:
In this paper, the flux equation for vaporization of multicomponent droplets in convective media is derived and the differential equations describing the vaporization history of the droplets are given. The vaporization history of multicomponent droplets is also calculated. The calculation results and experimental results The results fit well .First, the flux integral and the effective diffusion coefficient of a multicomponent ideal solution droplets in an inert gas (liquid droplets do not absorb nor release), vaporization in I. Set the solution from n kinds of components, the n + 1 kinds of components are formed on the surface of the droplets multivariate gas mixture axisymmetric diffusion layer, the first n +1 component refers to the inert gas I. The imaginary membrane theory axis Symmetric diffusion layer equivalent to the equivalent spherical symmetry imaginary membrane layer, you can stewart flux formula to write in this layer at any radius r steady-state diffusion equation, namely: