环境工程中大气污染防治管理措施探讨

来源 :绿色环保建材 | 被引量 : 0次 | 上传用户:selena2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于国内社会经济的持续进步,对自然环境的影响也是越来越大,诸多环境问题也慢慢显露出来,对经济的长久性发展与大众生活环境的优化产生影响。基于此,本文就环境工程项目中大气污染的特点、环境项目工程中的大气环境污染现状、大气环境污染防治现存的不足、环境项目工程中大气环境污染的防治举措进行了探讨。
其他文献
猪δ冠状病毒(Porcine deltacoronavirus,PDCo V)属于套式病毒目冠状病毒科δ冠状病毒属,是一种新发的猪源冠状病毒,主要感染新生仔猪,造成仔猪腹泻、呕吐、脱水甚至死亡。临床上经常与猪流行性腹泻病毒(Porcine epidemic diarrhea,PEDV)、猪传染性胃肠炎病毒(Transmissible gastroenteritis virus,TGEV)和猪轮状病
反刍动物瘤胃内源和外源尿素氮的高效利用,不仅有助于节约日粮蛋白,增加微生物蛋白产量,还能减少氮排放。尿素的分解依赖于瘤胃微生物脲酶,脲酶活性过高是导致尿素氮利用率偏低的主要原因。为了调控脲酶活性,本研究运用宏蛋白质组学技术对瘤胃微生物脲酶进行鉴定,然后采用体外克隆、表达、纯化方法得到瘤胃微生物脲酶辅助蛋白UreE和UreG,揭示了UreG与UreE的结合特征以及影响脲酶活化的UreG关键残基,最后
采后打蜡造成的低氧环境容易加重柑橘果实的无氧呼吸,伴随乙醇和乙醛为主的异味物质快速积累会导致果实风味劣变、货架期缩短。线粒体作为感知环境信号的重要细胞器,在果实中不仅参与了能量合成,而且对果实的品质维持和胁迫应答都具有关键作用。然而,线粒体在采后柑橘果实低氧应答过程中的作用和机理知之甚少。据此,本研究在优化并建立了从不同柑橘中制备高纯度果肉线粒体的基础上,比较了它们的线粒体蛋白组,并利用柑橘果肉进
杂草和病虫害严重威胁着水稻的生产,一旦发生会造成水稻大幅度减产进而造成严重的经济损失。目前防治水稻杂草和病虫害最经济、环保的方法是培育并种植对除草剂和病虫害有抵抗能力的品种。将多个病虫害抗性基因通过基因工程的手段转入水稻品种中,能够增强水稻对除草剂和多种病虫害等的抵抗能力。一方面目前很少有对除草剂、螟虫、褐飞虱、白叶枯病和稻瘟病均有抗性的水稻品种通过基因工程的手段被培育出来。另一方面,不同病虫害抗
子宫阴道结合部(Uterus-Vagina Junction,UVJ)是母禽输卵管的重要部分,此处的上皮隆起形成上皮褶,上皮褶内含有管状的贮精腺(Sperm Storage tubule,SST)结构。UVJ上皮褶(含SST)与禽类的繁殖息息相关,其发育过程中所形成的结构差异被认为是造成贮精性状个体差异的重要来源,但UVJ上皮褶(含SST)的发育在禽类,尤其是蛋鸡中研究较少。因此本研究从发育角度探
多年生黑麦草(Lolium perenne)是一种品质优良的冷季型草坪草,被广泛应用于园林绿化、运动场地建植和生态治理中。多年生黑麦草对高温的耐受性差,在我国华中和华南地区夏季地上部分枯死,不能安全越夏,成为其推广应用的制约因素。热激转录因子(heat shock transcription factors,HSFs)在植物高温胁迫调控网络中起着重要作用。多年生黑麦草品种胁迫耐受性的自然变异和胁迫
农作物秸秆(土豆、水稻、小麦、油菜、玉米),多年生植物(苋菜、芒草)和林木(杨树、桉树)含有丰富的木质纤维素,不仅可以转化为生物燃料,亦可生产高附加值化工产品。植物细胞壁是木质纤维素的主要成分,由不同类型的多糖(纤维素、半纤维素和果胶)、木质素和结构蛋白组成。然而,植物细胞壁的天然抗降解性,决定了木质纤维素酶解产糖产醇成本高、效率低、难于产业化生产。因此,木质纤维素高效转化需要三个主要步骤和条件:
肿瘤是威胁宠物生命健康的最主要病因之一,而宠物自发肿瘤与人类肿瘤发生、发展的机制相对保守,所以参照人类肿瘤的研究方法,开发宠物肿瘤治疗方法是非常必要的。以PD-1/PD-L1阻断为代表的免疫检查点阻断疗法已在临床肿瘤治疗中取得了喜人的进展,但也存在患者响应率低的应用局限。这可能与肿瘤所处的免疫抑制微环境有关。所以靶向肿瘤微环境(Tumor Microenvironment,简称TME),可能是突破
学位
鱼类病毒性神经坏死病(Virus nervous necrosis,VNN)是由神经坏死病病毒(Nervous necrosis virus,NNV)引起的一种严重威胁世界水产养殖业的传染性疾病,可导致120多种鱼类不同程度的损伤,严重制约了水产养殖业的可持续发展。本研究从病毒的分离鉴定、单克隆抗体的制备和逃逸宿主Ⅰ型干扰素(IFN-Ⅰ)反应三个方面进行研究,以期为后续建立石斑鱼神经坏死病毒的快速