论文部分内容阅读
为避免直接求解基于L∞距离的带约束逼近的非线性最优解引起的复杂性,提出了一种把降阶逼近曲线分解为基本曲线和修正曲线的降阶方法.基本曲线利用约束Legendre多项式可得到显式解,且保证降阶后曲线满足要求的边界插值条件;修正曲线的控制顶点由降阶逼近曲线和原曲线的差定义,能够在L∞范数意义下极小化降阶逼近曲线与原曲线的误差.文中方法以简单稳定的方式实现保端点插值的一次降多阶,并达到L∞范数意义下对原曲线的近似最佳逼近.最后通过实例说明了文中方法的有效性.